
Oracle ® Application Server

Developer’s Guide: LiveHTML and Perl Applications

Release 4.0.8.1

September 1999

Part No. A66960-02

Oracle Application Server Release 4.0.8.1 Developer’s Guide: LiveHTML and Perl Applications

Part No. A66960-02

Copyright © 1996, 1999, Oracle Corporation. All rights reserved.

Primary Author: Janice Nygard

Contributing Authors: Kai Li

Contributors: Sanjay Patil

The programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup,
redundancy, and other measures to ensure the safe use of such applications if the programs are used for such
purposes, and Oracle Corporation disclaims liability for any damages caused by such use of the programs.

The programs (which include both the software and documentation) contain proprietary information of Oracle
Corporation; they are provided under a license agreement containing restrictions on use and disclosure and are
also protected by copyright, patent, and other intellectual and industrial property laws. Reverse engineering,
disassembly, or decompilation of the programs is prohibited.

The information contained in this document is subject to change without notice. If you find any problems in the
documentation, please report them to us in writing. Oracle Corporation does not warrant that this document is
error free. Except as may be expressly permitted in your license agreement for these programs, no part of these
programs may be reproduced or transmitted in any form or by any means, electronic or mechanical, for any
purpose, without the express written permission of Oracle Corporation.

If the programs are delivered to the U.S. Government or anyone licensing or using the programs on behalf of
the U.S. Government, the following notice is applicable:

Restricted Rights Notice Programs delivered subject to the DOD FAR Supplement are "commercial computer
software" and use, duplication, and disclosure of the programs, including documentation, shall be subject to
the licensing restrictions set forth in the applicable Oracle license agreement. Otherwise, programs delivered
subject to the Federal Acquisition Regulations are "restricted computer software" and use, duplication, and
disclosure of the programs shall be subject to the restrictions in FAR 52.227-19, Commercial Computer Software
- Restricted Rights (June, 1987). Oracle Corporation, 500 Oracle Parkway, Redwood City, CA 94065.

Oracle is a registered trademark, and the Oracle logo, NLS*WorkBench, Pro*COBOL, Pro*FORTRAN,
Pro*Pascal, SQL*Loader, SQL*Module, SQL*Net, SQL*Plus, Oracle7, Oracle Server, Oracle Server Manager,
Oracle Call Interface, Oracle7 Enterprise Backup Utility, Oracle TRACE, Oracle WebServer, Oracle Web
Application Server, Oracle Application Server, Oracle Network Manager, Secure Network Services, Oracle
Parallel Server, Advanced Replication Option, Oracle Data Query, Cooperative Server Technology, Oracle
Toolkit, Oracle MultiProtocol Interchange, Oracle Names, Oracle Book, Pro*C, and PL/SQL are trademarks or
registered trademarks of Oracle Corporation. All other company or product names mentioned are used for
identification purposes only and may be trademarks of their respective owners.

Contents

Preface .. xi

Part I LiveHTML Cartridge

1 LiveHTML Cartridge Overview

Server-Side Includes (SSI) .. 1-1
Embedded Scripts ... 1-2
Web Application Objects .. 1-2
IDL-to-Perl Compiler ... 1-3
Process Flow... 1-3

2 Adding and Invoking Applications

Adding LiveHTML Applications .. 2-1
Adding Cartridges to an Existing Application .. 2-3

Configuring LiveHTML Applications .. 2-5
Application Configuration .. 2-5
Cartridge Configuration .. 2-5
Security... 2-9

3 Using Server-Side Includes

SSI Commands .. 3-1
Errors .. 3-2
Special Characters... 3-2
Command Summary.. 3-2
iii

config ... 3-3
Example:... 3-3

include... 3-4
Example:... 3-4

echo .. 3-4
Example:... 3-5

fsize .. 3-5
Example:... 3-5

flastmod... 3-6
Example:... 3-6

exec... 3-6
Example:... 3-7

request ... 3-7
Using Values from the Query String.. 3-8

SSI Examples.. 3-8
Displaying Date and Time... 3-9
Getting Information About the Current File... 3-9
Getting Information About Other Files ... 3-9
Displaying Browser Information.. 3-10
Providing Host and Server Information.. 3-10
Accessing a Database ... 3-10

4 Writing Scripts

Filename Extensions for Scripts ... 4-2
Enabling and Disabling the Scripting Feature.. 4-2
Specifying Scripting Languages .. 4-2

Overall Default Language ... 4-2
For a Particular Page .. 4-3
For a Script Block Within a Page .. 4-3

Embedding Scripts.. 4-3
<%...%>... 4-4
<%= ... %> .. 4-5
<SCRIPT>...</SCRIPT>... 4-5

Using CORBA Objects in Scripts .. 4-6
Scripting Examples ... 4-8
iv

Getting the Perl Version Number .. 4-9
Invoking a Function in an Included Perl Module.. 4-9

5 Developing with Web Application Objects

What are Web Application Objects ... 5-1
Scripting with Web Application Objects ... 5-3

Using Perl... 5-3
Examples.. 5-5

Summary of Methods and Attributes ... 5-11
Request ... 5-15
Response... 5-18
Cookie ... 5-20
HTTPListener .. 5-21
OutputStream .. 5-22
InputStream ... 5-23
Vector... 5-25
Iterator... 5-28
Hashtable.. 5-29
ICXRequest .. 5-31
ICXResponse.. 5-33
ObjectFactory... 5-34
Server... 5-35
Document ... 5-36

6 Transactions in LiveHTML

Specifying the Transactional Property of a LiveHTML Page... 6-1
Transaction Objects for Web Application Objects ... 6-3
TxContext ... 6-4
TxScriptDoc ... 6-6
Example... 6-7

7 Accessing CORBA Objects from Perl Scripts

Using the IDL-to-Perl Compiler .. 7-2
Overview of IDL-to-Perl Compiler for Release 4.0.. 7-2
v

Other Compiler Options .. 7-2
Identifiers, Naming Scopes, and Perl Packages .. 7-3

Data Types ... 7-5
Using the Generated Perl Bindings... 7-5

Modules.. 7-5
Object References .. 7-6
Interfaces .. 7-8
Constants.. 7-9
Basic Data Types ... 7-10
The IDL Any Type .. 7-10
Strings... 7-11
Arrays and Sequences .. 7-12
Operations.. 7-13
Attributes ... 7-13
Enumerated Types.. 7-14
Structures ... 7-15
Unions .. 7-16
Typedefs ... 7-16
Exceptions .. 7-17

8 CORBA Pseudo-Object API for Perl Clients

Object .. 8-2
Instance Methods.. 8-2

ORB.. 8-4
Class Methods ... 8-4
Instance Methods.. 8-6

Any... 8-7
Instance Methods.. 8-8

TypeCode .. 8-9
Class Methods ... 8-11
Instance Methods.. 8-16

TCKind.. 8-21

9 Sample Output from the IDL-to-Perl Compiler

Sample IDL .. 9-1
vi

Directory Structure of the Generated Files.. 9-2
Listings of the Generated Files .. 9-3

finance/account/trans_t.pm .. 9-3
finance/account/trans_type.pm.. 9-4
finance/account/transaction.pm ... 9-5
finance/account.pm ... 9-6
finance/bank/accountseq.pm .. 9-9
finance/bank/badaccount.pm ... 9-10
finance/bank/stringseq.pm.. 9-11
finance/bank.pm .. 9-12
finance/checkingaccount.pm ... 9-14
finance.pm ... 9-15
outer/inner.pm ... 9-16
outer.pm... 9-16

Part II Perl Cartridge

10 Perl Cartridge Overview

How the Perl Cartridge Improves Performance.. 10-2
Files in the Distribution .. 10-2
Using $ORAWEB_HOME/../cartx/common/perl as Your Main Perl Installation 10-3
Variations from Perl Standard Version... 10-4

11 Tutorial

1. Writing the Perl Script ... 11-1
2. Creating a Perl Application and its Components... 11-2

Specifying a Virtual Path for Your Perl Cartridge... 11-3
3. Reloading ... 11-4
4. Creating an HTML Page to Invoke the Perl Script... 11-4

12 Adding and Invoking Perl Applications

Adding Perl Applications ... 12-1
Adding Cartridges to an Existing Application .. 12-3

Configuring Perl Applications ... 12-4
vii

Application Configuration .. 12-5
Cartridge Configuration .. 12-5

Number of Requests Processed by a Cartridge Instance .. 12-6
Invoking Perl Cartridges ... 12-7
Life Cycle of the Perl Cartridge.. 12-7

13 Writing Perl Scripts

Customized cgi-lib.pl Library .. 13-1
Variable Scoping ... 13-2
Namespace Collisions .. 13-3
No Need for the #! Line.. 13-5
System Resources.. 13-5
The DBI and DBD::Oracle Modules ... 13-5
Pre-Loading Modules - Persistent Database Connections.. 13-6
Testing Perl Scripts ... 13-8
Perl Modules .. 13-9

DBI (version 0.79).. 13-9
DBD::Oracle (version 0.44) .. 13-9
LWP or libwww-perl (version 5.08) ... 13-9
CGI (version 2.36) ... 13-10
MD5 (version 1.7).. 13-10
IO (version 1.15) .. 13-10
Net (version 1.0502) .. 13-11
Data-Dumper (version 2.07).. 13-12

Developing Perl Extension Modules .. 13-13
Migrating Perl Extension Modules .. 13-13
Accessing the Application Server API in Perl .. 13-14

14 Upgrading your Perl Interpreter

Installing a New Interpreter ... 14-1
Configuring Applications to Use a New Interpreter .. 14-2

15 Troubleshooting

Problems Invoking Your Perl Script ... 15-1
viii

Log Files.. 15-1
Unhandled Errors.. 15-1

Index
ix

x

Preface

Audience
This book is written for users who develop web applications using the LiveHTML
and Perl cartridges of Oracle Application Server.

The Oracle Application Server Documentation Set
This table lists the Oracle Application Server documentation set.

Title of Book Part No.

Oracle Application Server 4.0.8 Documentation Set A66971-03

Oracle Application Server Overview and Glossary A60115-03

Oracle Application Server Installation Guide for Sun SPARC Solaris 2.x A58755-03

Oracle Application Server Installation Guide for Windows NT A58756-03

Oracle Application Server Administration Guide A60172-03

Oracle Application Server Security Guide A60116-03

Oracle Application Server Performance and Tuning Guide A60120-03

Oracle Application Server Developer’s Guide: PL/SQL and ODBC Applications A66958-02

Oracle Application Server Developer’s Guide: JServlet Applications A73043-01

Oracle Application Server Developer’s Guide: LiveHTML and Perl Applications A66960-02

Oracle Application Server Developer’s Guide: EJB, ECO/Java and CORBA Applications A69966-01

Oracle Application Server Developer’s Guide: C++ CORBA Applications A70039-01

Oracle Application Server PL/SQL Web Toolkit Reference A60123-03

Oracle Application Server PL/SQL Web Toolkit Quick Reference A60119-03
xi

Conventions
This table lists the typographical conventions used in this manual.

The term “Oracle Server” refers to the database server product from Oracle Corpo-
ration.

The term “oracle” refers to an executable or account by that name.

The term “oracle” refers to the owner of the Oracle software.

Oracle Application Server JServlet Toolkit Reference A73045-01

Oracle Application Server JServlet Toolkit Quick Reference A73044-01

Oracle Application Server Cartridge Management Framework A58703-03

Oracle Application Server 4.0.8.1 Release Notes A66106-04

Convention Example Explanation

bold oas.h
owsctl
wrbcfg
www.oracle.com

Identifies file names,
utilities,
processes,
and URLs

italics file1 Identifies a variable in text; replace this place
holder with a specific value or string.

angle brackets <filename> Identifies a variable in code; replace this place
holder with a specific value or string.

courier owsctl start wrb Text to be entered exactly as it appears. Also
used for functions.

square brackets [-c string]

[on|off]

Identifies an optional item.

Identifies a choice of optional items, each sep-
arated by a vertical bar (|), any one option
can be specified.

braces {yes|no} Identifies a choice of mandatory items, each
separated by a vertical bar (|).

ellipses n,... Indicates that the preceding item can be
repeated any number of times.

Title of Book Part No.
xii

Technical Support Information
Oracle Global Support can be reached at the following numbers:

■ In the USA: Telephone: 1.650.506.1500

■ In Europe: Telephone: +44 1344 860160

■ In Asia-Pacific: Telephone: +61. 3 9246 0400

Please prepare the following information before you call, using this page as a check-
list:

❏ your CSI number (if applicable) or full contact details, including any special
project information

❏ the complete release numbers of the Oracle Application Server and associated
products

❏ the operating system name and version number

❏ details of error codes and numbers and descriptions. Please write these down
as they occur. They are critical in helping WWCS to quickly resolve your prob-
lem.

❏ a full description of the issue, including:

■ What - What happened? For example, the command used and its result.

■ When -When did it happen? For example, during peak system load, or
after a certain command, or after an operating system upgrade.

■ Where -Where did it happen? For example, on a particular system or
within a certain procedure or table.

■ Extent - What is the extent of the problem? For example, production sys-
tem unavailable, or moderate impact but increasing with time, or minimal
impact and stable.

❏ Keep copies of any trace files, core dumps, and redo log files recorded at or
near the time of the incident. WWCS may need these to further investigate
your problem. For a list of trace and log files, see “Configuration and Log Files”
in the Administration Guide.

For installation-related problems, please have the following additional information
available:

❏ listings of the contents of $ORACLE_HOME (Unix) or %ORACLE_HOME%
(NT) and any staging area, if used.
xiii

❏ installation logs (install.log, sql.log, make.log, and os.log) typically stored in
the $ORACLE_HOME/orainst (Unix) or %ORACLE_HOME%\orainst (NT)
directory.

Documentation Sales and Client Relations
In the United States:

■ To order hardcopy documentation, call Documentation Sales: 1.800.252.0303.

■ For shipping inquiries, product exchanges, or returns, call Client Relations:
1.650.506.1500.

In the United Kingdom:

■ To order hardcopy documentation, call Oracle Direct Response:
+44 990 332200.

■ For shipping inquiries and upgrade requests, call Customer Relations:
+44 990 622300.
xiv

Reader’s Comment Form

Oracle Application Server 4.0 Developer’s Guide: LiveHTML and Perl Applications
Part No. A66960-02

Oracle Corporation welcomes your comments and suggestions on the quality and
usefulness of this publication. Your input is an important part of the information
used for revision.

■ Did you find any errors?

■ Is the information clearly presented?

■ Do you need more information? If so, where?

■ Are the examples correct? Do you need more examples?

■ What features did you like most about this manual?

If you find any errors or have suggestions for improvement, please indicate the
topic, chapter, and page number below:

Please send your comments to:

Oracle Application Server Documentation Manager
Oracle Corporation
500 Oracle Parkway
Redwood Shores, CA 94065

If you would like a reply, please provide your name, address, and telephone num-
ber below:

Thank you for helping us improve our documentation.
xv

xvi

Part I

LiveHTML Cartridge

Oracle Application Server 4.0 Developer’s Guide: LiveHTML and Perl Applications

LiveHTML Cartridge
1

LiveHTML Cartridge Overview

The LiveHTML cartridge simplifies the task of generating dynamic HTML pages.
When you want to generate a HTML page dynamically, you usually have to write a
script or program to generate the entire page including the static portions. This
requires more time to write the scripts and programs and to generate each dynamic
page.

LiveHTML provides an alternative method of generating dynamic HTML pages. It
saves you from generating the entire HTML page each time it is requested by allow-
ing you to embed server-side includes (SSI commands) and scripts in an otherwise
static HTML page.

The LiveHTML cartridge is Oracle Application Server’s implementation and exten-
sion of SSI and server-side scripts. The cartridge allows you to embed SSI com-
mands and scripts directly within HTML pages.

The LiveHTML cartridge features:

■ Server-Side Includes (SSI)

■ Embedded Scripts

■ Web Application Objects

■ IDL-to-Perl Compiler

■ Process Flow

Server-Side Includes (SSI)
Using SSI, you can:

■ include other files in the current file

■ get the values of CGI and SSI environment variables
 Overview 1-1

Embedded Scripts
■ get the current date and time

■ get the size of a file

■ get the last modification date of a file

■ run scripts

■ send requests to other cartridges (this is an extension to the standard SSI).
Using Oracle Application Server’s Inter-cartridge Exchange service (ICX), you
can send a request to other cartridges, such as the PL/SQL cartridge or the Java
cartridge, and include the data returned from the cartridges in the page.

Embedded Scripts
The LiveHTML cartridge is able to process scripts embedded within HTML pages.
This scripting feature enables you to combine static HTML with the full functional-
ity of scripting languages. Currently, the cartridge runtime supports Perl as the
scripting language.

In your scripts, you can use all of Perl’s features. For example, you can call Perl’s
built-in functions, define and invoke your own functions, include Perl modules in
your scripts (with the use statement), and use Perl’s special variables. See
Chapter 4, “Writing Scripts” for details and script examples.

Scripts in your page can also access Web Application Objects. These objects help
you to manage and design your HTML pages as an application.

The scripting feature is compatible with Microsoft Active Server Pages. If you have
Active Server Pages written in Perl, you can use them with the LiveHTML car-
tridge.

Web Application Objects
Scripts in your LiveHTML pages can access Web Application Objects, a framework
designed to provide robust support for building transactional web-based applica-
tions. See Chapter 5, “Developing with Web Application Objects” for details.

Note: The LiveHTML cartridge uses the same interpreter as the
Perl cartridge. The implementation of this interpreter has func-
tional variations from standard Perl interpreters. Refer to the sec-
tion “Variations from Perl Standard Version” in Chapter 10.
1-2 Oracle Application Server 4.0 Developer’s Guide: LiveHTML and Perl Applications

Process Flow
IDL-to-Perl Compiler
An IDL-to-Perl compiler is provided with the LiveHTML cartridge. This compiler,
perlidlc, allows you to generate Perl bindings for CORBA objects so that they can
be used in Perl scripts in LiveHTML pages. Refer to Chapter 7, “Accessing CORBA
Objects from Perl Scripts” for more details.

Process Flow
The following figure illustrates the flow of a request for a LiveHTML application.

Figure 1–1 Process flow for a request to a LiveHTML application

1. The Listener component of Oracle Application Server receives a request for a
LiveHTML cartridge from a client.

2. The Dispatcher sees that the request is for a cartridge and forwards it to the
WRB.

3. The WRB examines the URL and sends the request to a LiveHTML cartridge
since the virtual path specified in the URL is mapped to a LiveHTML cartridge.

4. The LiveHTML cartridge running in a cartridge server process receives the
request, examines the URL, and finds the name of the LiveHTML file to parse.

5. The LiveHTML cartridge loads the file and invokes the scripting engine to
interpret the scripts in the file.

6. The scripting engine generates a response, including both the HTTP response
header and response body, and returns it to the LiveHTML cartridge. The Live-

Browser WRBListener/
Dispatcher

Cartridge server LiveHTML
1 2 3 5

LiveHTML cartridge666
Scripts

6

LiveHTML Cartridge Overview 1-3

Process Flow
HTML cartridge receives the response and returns it to the WRB. The WRB for-
wards the response to the client browser that invoked the request.

Note: Currently, the NT environment has a 512 byte limitation on
the expanded length of some environment variables (CLASSPATH,
JAVA_HOME, etc.). Some Oracle Application Server cartridges will
try to expand environment variables. Therefore, make sure that
your environment variables are not longer than 250-300 characters
long.
1-4 Oracle Application Server 4.0 Developer’s Guide: LiveHTML and Perl Applications

Adding and Invoking Ap
2

Adding and Invoking Applications

This chapter describes how to add LiveHTML applications to Oracle Application
Server and invoke them from browsers.

Contents
■ Adding LiveHTML Applications

■ Configuring LiveHTML Applications

Adding LiveHTML Applications
To add Oracle Application Server applications to the application server, you per-
form these general steps:

■ Add the application

■ Add cartridge(s) to the application

To add applications and cartridges, you need to be able to log in as the “admin”
user in the Oracle Application Server Manager.

To add applications and cartridges:

1. Start up your browser and display the top-level administration page for Oracle
Application Server.

2. Click the next to a site name to display the components on the site. You
should see “Oracle Application Server”, “HTTP Listeners”, and “Applications”.

3. Click “Applications” to display the applications in the right frame. Do not click
the next to Applications because you will see a list of applications for the
site in the left frame, instead of Applications in the right frame.

+

+

plications 2-1

Adding LiveHTML Applications
4. On the applications page in the right frame, click . This pops up the Add
Application dialog.

5. In the Add Application dialog:

■ Application Type: select LiveHTML.

■ Configure Mode: select Manual, which enables you to enter configuration
data using dialog boxes. The other option, From File, assumes that you
have already entered the configuration data for the application in a file.

■ Click Apply.

This displays the Add Application dialog.

6. In the Add Application dialog:

■ Application Name: enter the name that the server uses to identify your
application.

■ Display Name: enter the name that is used in the administration forms.

■ Application Version: enter a version number for your application.

■ Click Apply.

When you click Apply, you get a Success dialog, which contains a button
that enables you to add LiveHTML cartridges to the application.

7. In the Success dialog box, click the Add Cartridges to Application button. This
displays the Add A Cartridge dialog.

8. In the Add A Cartridge dialog:

■ Cartridge Name: enter the name that the server uses to identify your Live-
HTML cartridge in your application.

■ Display Name: enter the name that is used in the administration forms.

■ Virtual Path: enter a path for the LiveHTML cartridge such that users can
specify this path in URLs to invoke the LiveHTML cartridge. This path is
mapped to the physical path that you specify below. See the section Virtual
Paths Form below.

■ Physical Path: enter the physical directory path that leads to files for your
LiveHTML cartridge, including files for your LiveHTML application. The
virtual path specified above maps to this physical path.
2-2 Oracle Application Server 4.0 Developer’s Guide: LiveHTML and Perl Applications

Adding LiveHTML Applications
9. Click Apply.

10. Stop and restart the listeners and other components of the application server.

See “Stopping and Starting the Application Server” in the “Application Config-
uration” chapter for details.

The following figure summarizes the dialog boxes that you completed. The fields
in the dialog boxes are listed in parentheses.

Figure 2–1 Dialogs to create a LiveHTML application and cartridge

Adding Cartridges to an Existing Application
A LiveHTML application can have one or more cartridges. You need more than one
cartridge in a LiveHTML application if you need to configure cartridge parameters
differently for each cartridge. For example, you might enable ICX in some car-
tridges but not others.

To add a cartridge to a LiveHTML application:

1. Select “Cartridges” under the LiveHTML application to which you want to add
cartridges in the navigational tree.

Note: For security reasons, you cannot specify a physical path
ending with ".. ". But you can use ".. " in the physical path setting
to indicate an upper directory level. For example, "/routines/
../libraries/ ".

Note: If your application does not appear in the navigational tree,
shift-click or control-click the browser’s Reload button.

Add Application (LiveHTML, Manual)

Add A Cartridge dialog (cartname, display name, virtual path,

Add Application (appname, display name, version)

Success! (Add Cartridge to this Application button)

physical path)
Adding and Invoking Applications 2-3

Adding LiveHTML Applications
Figure 2–2 Adding LiveHTML cartridges to an existing application

2. Click to display the Add Cartridge dialog.

3. In the Add Cartridge dialog:

■ Configure Mode: select Manually.

■ Click Apply, which displays the Add A Cartridge dialog.

4. In the Add A Cartridge dialog:

■ Cartridge Name: enter the name that the server uses to identify your Live-
HTML cartridge in your application.

■ Display Name: enter the name that is used in the administration forms.

■ Virtual Path: enter a path for the LiveHTML cartridge such that users can
specify this path in URLs to invoke the LiveHTML cartridge. This path is
mapped to the physical path that you specify below. See the section Virtual
Paths Form below.

■ Physical Path: enter the physical directory path that leads to files for your
LiveHTML cartridge, including files for your LiveHTML application. The
virtual path specified above maps to this physical path.

■ Click Apply.

Note: For security reasons, you cannot specify a physical path
ending with ".. ". But you can use ".. " in the physical path setting
to indicate an upper directory level. For example, "/routines/
../libraries/ ".
2-4 Oracle Application Server 4.0 Developer’s Guide: LiveHTML and Perl Applications

Configuring LiveHTML Applications
The following figure summarizes the dialog boxes that you completed. The fields
in the dialog boxes are listed in parentheses.

Figure 2–3 Dialogs to add LiveHTML cartridges

Configuring LiveHTML Applications
The configuration forms are divided into two sections: application configuration
and cartridge configuration. Forms in the application configuration section contain
parameters that apply for the entire application, while forms in the cartridge config-
uration section contain parameters that apply to a particular cartridge.

Application Configuration
Application configuration parameters are described in the “Application Configura-
tion” chapter, because they are the same for all types of applications.

Cartridge Configuration
For LiveHTML cartridges, the cartridge configuration section contains two forms:
the Virtual Paths form and the LiveHTML Parameters form.

Virtual Paths Form
The Virtual Paths form enables you to specify a virtual path for a LiveHTML car-
tridge. Users can then specify this virtual path in URLs to invoke the LiveHTML
cartridge. The virtual path is available from all listeners listed in the Web Configura-
tion page for the application.

For example, if you specify a virtual path of /myApp, users can invoke your Live-
HTML applications by typing /myApp/file at the URL, where file is a filename that
can be found in the physical paths associated with the /myApp virtual path.

Note: If your new cartridge does not appear in the navigational
tree, shift-click or control-click the browser’s Reload button.

Add A Cartridge dialog (cartname, display name, virtual path, physical path)

Add Cartridge (Manually add information)
Adding and Invoking Applications 2-5

Configuring LiveHTML Applications
LiveHTML Parameters Form
The LiveHTML Parameters form (Figure 2–4) enables you to configure parameters
specific to LiveHTML cartridges. It has the following parameters:

Note: For security reasons, you cannot specify a physical path
ending with ".. ". But you can use ".. " in the physical path setting
to indicate an upper directory level. For example, "/routines/
../libraries/ ".

Table 2–1 LiveHTML-specific configuration

Option Description

Enable LiveHTML Whether or not the LiveHTML cartridge is enabled.

If not enabled, SSI commands, scripting commands, and
Web Application Objects are not interpreted. If you want to
enable only some features of the cartridge, you can enable
the LiveHTML cartridge, but disable the features that you
do not want.

Default: Enabled

Parse LiveHTML Extensions
Only

Whether or not the cartridge should parse files with the
extensions specified in the “LiveHTML Extensions” field.

If enabled, the cartridge will parse files with extensions
listed in the “LiveHTML Extensions” field only.

If not enabled, the cartridge will parse all files regardless of
extension.

Default: Enabled

LiveHTML Extensions The list of file extensions handled by the cartridge. This
field is used only if you have enabled the “Parse Live-
HTML Extensions Only” field.

You can configure the cartridge to process all HTML files
(that is, set the extension list to include “html”). However,
unless all your HTML files actually use SSI, this degrades
performance.

Default: html shtml lhtml
2-6 Oracle Application Server 4.0 Developer’s Guide: LiveHTML and Perl Applications

Configuring LiveHTML Applications
Enable Exec Tag Whether or not the exec SSI command is interpreted by the
cartridge.

Default: Enabled

Enable ICX Tag Whether or not the request command is interpreted by the
cartridge.

Default: Enabled

Check for <BODY> tag in ICX Whether or not the cartridge checks for the <BODY> tag
inside the response to an ICX request. (ICX requests are
sent using the request command.)

If enabled, only data in the <BODY> section of the ICX
response is included in the page that sent the request com-
mand. If no <BODY> section is found in the ICX response,
the cartridge raises an error.

If not enabled, the entire ICX response is included in the
page.

Default: Enabled

Default page The page that is returned to the client if the URL does not
specify a file.

Default: index.html

Enable Script Execution Whether or not embedded scripts in the files are inter-
preted by the cartridge.

Default: Enabled

Script Page Extension The list of file extensions that the cartridge checks for
embedded scripts.

Default: hsp hsa asp asa

Default Scripting Language The default scripting language. Currently, Perl is the only
language supported. You can specify a different language
for the scope of a page or script block. See “Specifying
Scripting Languages” in Chapter 4.

Default: Perl

Table 2–1 LiveHTML-specific configuration

Option Description
Adding and Invoking Applications 2-7

Configuring LiveHTML Applications
Max Requests The number of requests that a cartridge server handles
before it terminates.

This field can be useful while you are developing Live-
HTML applications. If your page calls a Perl library, the
Perl interpreter caches the Perl library and uses the cached
version for subsequent requests. If you modify the library,
you want the interpreter to load the new version. To do
this, you have to terminate the cartridge server process so
that a new cartridge server process (with a new Perl inter-
preter) would handle the request. A quick way of doing
this is to set the Max Requests value to 1.

Default: There is no default, which means that the car-
tridge server can handle an unlimited number of requests.

Perl Application Library
Paths

The directories that the Perl interpreter searches in for Perl
libraries.

If you add paths to this option, you should use full path-
names. If specifying multiple directories, use ": " to delimit
each directory.

Default: . (the current working directory of the cartridge
server process)

Table 2–1 LiveHTML-specific configuration

Option Description
2-8 Oracle Application Server 4.0 Developer’s Guide: LiveHTML and Perl Applications

Configuring LiveHTML Applications
Figure 2–4 LiveHTML cartridge configuration form

Security
Enabling users to execute scripts on the server can create security problems and
other risks. You can configure the LiveHTML cartridge in the following ways to
minimize security risks:

■ You can configure the cartridge not to run any SSI commands that involve exe-
cuting scripts. The cartridge can only get the values of environment variables
or it can include other files. You do this by disabling the exec tag.

■ You can also configure it not to run any requests that invoke another cartridge.
You do this by disabling the ICX tag.

■ To be more extreme, you can disable the cartridge entirely, in which case no SSI
commands or scripts are interpreted. You do this by disabling the LiveHTML
option.

■ You can protect the virtual paths for LiveHTML cartridges using authentication
and restriction schemes. See the Security Guide for details.
Adding and Invoking Applications 2-9

Configuring LiveHTML Applications
2-10 Oracle Application Server 4.0 Developer’s Guide: LiveHTML and Perl Applications

Using Server-Side
3

Using Server-Side Includes

Contents
■ SSI Commands

■ config

■ include

■ echo

■ fsize

■ flastmod

■ exec

■ request

■ SSI Examples

SSI Commands
Server-Side Includes (SSI) commands are formatted as HTML comments and have
the following format:

<!--# command [param1=" value1 " param2 =" value2 " ...] -->

where:

■ command is the name of the SSI command

■ param1 and param2 are names of parameters to pass to the command

■ value1 and value2 are values for the parameters

Parameters depend on the command; some commands do not take parameters.
 Includes 3-1

SSI Commands
In your LiveHTML files, you can have only one SSI command per line. For example:

<p><!--#include file="notes.htm"--> Server name: <!--#echo var="SERVER_NAME" -->

must be broken into two separate lines:

<p><!--#include file="notes.htm"-->
Server name: <!--#echo var="SERVER_NAME" -->

The output is the same.

Errors
If an error occurs while processing an SSI command (for example, the specified
command was not found or there was a parsing error), the user sees the following
message: “Server Side Processing Error”.

You can change this error message using the config errmsg command. For
example, the following command sets the error message to “If you see this mes-
sage, an error occurred.”

<!--#config errmsg="If you see this message, an error occurred.">

The custom message is used for all errors.

Special Characters
The $ and the single quote characters have special meaning to the LiveHTML car-
tridge. If you need to specify these characters literally within an SSI tag, precede
them with a backslash (\).

Command Summary
The following table lists the SSI commands that can be processed by the LiveHTML
cartridge:

Table 3–1 SSI commands

Command Description

config Sets parameters for how the included files or scripts are to be
parsed. It is normally the first LiveHTML command in a file.

include Specifies that a file is to be included in the generated HTML
page at this point.
3-2 Oracle Application Server 4.0 Developer’s Guide: LiveHTML and Perl Applications

config
config
Defines formatting information for other SSI commands in the file. The config
command is usually the first SSI command in a file; you can have more than one
config command in a file.

Example:
<!--#config errmsg="A parse error occurred" sizefmt="bytes" cmdecho="ON"-->

echo Gives the value of an environment variable.

fsize Gives the size of the file.

flastmod Gives the last modification date of the file.

exec Executes a script.

request Sends a request to another cartridge using inter-cartridge
exchange (ICX).

Parameter Description

errmsg The error message that is sent to the client if an error occurs while
parsing the document.

timefmt The format to use when displaying dates. The conventions follow
the strftime library call. (Refer to your system’s strftime man
pages for more information.)

Ordinary characters in the format are copied to the document with-
out conversion, so you can insert “on” or “at” or other useful strings.

sizefmt The format to use when displaying file size. Possible values are:

■ bytes - the file size is given in bytes

■ abbrev - the file size is given in Kb or Mb

cmdecho Whether non-CGI scripts subsequently executed have their output
incorporated into this HTML page. The possible values are ON and
OFF. ON specifies that the output is included. The default is OFF.

cmdprefix The string to prepend to each line of the script output.

cmdpostfix The string to append to each line of the script output.

Table 3–1 SSI commands

Command Description
Using Server-Side Includes 3-3

include
include
Includes a file in the generated HTML page. The file can be another LiveHTML file,
a regular HTML file, or an ASCII file. Oracle Application Server determines the
type of the included file by its extension.

If the included file is a complete HTML document, the LiveHTML cartridge reads
only the data in the <BODY> section of the document. Data in the <HEAD> section
of the document is not included.

Example:
You can include a set of common links in your files by including a file that specifies
the links. If you insert this command in your HTML file:

<!--#include file="links.html"-->

and the links.html file contains:

<p>Home |
Index |
Search

this would result in the following links being inserted into your Web page:

Home | Index | Search

echo
Gives the value of a standard CGI or SSI environment variable.

For a list of CGI environment variables, see http://hoohoo.ncsa.uiuc.edu/cgi-1.1/.

Parameter Description

virtual The virtual path to the file. The directory mappings for virtual paths
are set by the Oracle Application Server administrator using Oracle
Application Server Manager.

file The pathname relative to the current directory. References to parent
directories or uses of absolute pathnames are not allowed.

Parameter Description

var The name of the environment variable.
3-4 Oracle Application Server 4.0 Developer’s Guide: LiveHTML and Perl Applications

fsize
The following table lists the SSI environment variables:

Example:
The command:

Current date/time: <!--#echo var="DATE_LOCAL"-->

generates something like:

Current date/time: Thursday, April 17, 1997 03:15 PM

fsize
Gives the size of the file in the format specified in the most recent “config
sizefmt ” command.

This command takes the same parameters as include .

Example:
The command

<!--#fsize file="logo.jpg"-->

generates the size of the logo.jpg file.

Table 3–2 SSI environment variables

SSI environment variable Description

DOCUMENT_NAME The current filename.

DOCUMENT_URI The virtual path to this file.

QUERY_STRING_UNESCAPED If the client sent a query string, this is an unes-
caped version of it, with all shell-special characters
escaped with \.

DATE_LOCAL The current date and local time zone, given in the
format specified in the most recent config
timefmt command.

DATE_GMT The current date and time zone in Greenwich
Mean Time, given in the format specified in the
most recent config timefmt command.

LAST_MODIFIED The last modification date of the file, given in the
format specified in the most recent config
timefmt command.
Using Server-Side Includes 3-5

flastmod
A common use of this command is to provide the user with the sizes of graphic
files to be downloaded. This is a tremendous time saver if you add and change
downloadable images frequently because you never have to look up the file sizes
and enter them manually.

flastmod
Gives the last modification date of the file in the format specified in the most recent
“config timefmt ” command.

This command takes the same parameters as include .

Example:
The command

<!--#flastmod file="releases.html"-->

generates the date when the releases.html file was last modified.

exec
Executes a script. The parameter specifies whether or not the script is CGI.

Note that before you can use the exec command, you need to enable it in the Live-
HTML cartridge configuration. In the Cartridge Parameters page of the LiveHTML
cartridge, set the EnableExecTag to TRUE.

Parameter Description

cmd Specifies a non-CGI script. Execution is passed to the operating sys-
tem, and the given string is parsed as though it were entered at a
command-line interface. The full path of the script must be given.

You can reference the SSI environment variables.

Note: For the output of the script to be included in the HTML page,
you have to set the following command in the page:

<!--#config cmdecho="ON"-->

cgi Specifies a CGI script. The value is the virtual path of the CGI script.
URL locations are automatically converted into HTML anchors.
3-6 Oracle Application Server 4.0 Developer’s Guide: LiveHTML and Perl Applications

request
Example:
<!--#config cmdecho="ON" -->
...
<!--#exec cmd="/bin/who" -->

request
Makes an ICX (inter-cartridge exchange) request. The ICX feature of Oracle Appli-
cation Server allows cartridges to communicate with each other by making HTTP
requests. For example, you can use this command to send a request to a PL/SQL
cartridge to run a stored procedure in the database, and embed the results of the
stored procedure in the LiveHTML document.

The request command is an Oracle Application Server extension to the SSI com-
mand set.

Note: Before using the request command, you need to enable it
in the LiveHTML cartridge configuration. In the Cartridge Parame-
ters page of the LiveHTML cartridge, set the EnableICXTag to
TRUE.

Parameter Description

url The URL to which to send the request. The syntax of the URL is:

http://user:password@host:port/url-path?QS

where:

url-path extends the semantics of the common URL because the Live-
HTML cartridge supports variable substitution.

QS is a query string in the form of name-value pairs. The syntax is
the same as the query string in the GET method (each name-value
pair is separated by the & character, spaces are replaced with the +
character).

You can let the LiveHTML cartridge encode the query string for you
if you enclose it in single quotes.
Using Server-Side Includes 3-7

SSI Examples
Using Values from the Query String
You can invoke a LiveHTML page with name-value pairs in the query string and
reference the values in request commands on the page. You can use this method
to generate a dynamic URL in the request command.

For example, if your LiveHTML page is showUserProp.shtml and it needs a value
for user and a value for property, you can invoke the page with:

http://domain/showUserProp.shtml?user=chris&property=job+title

This URL can be generated automatically by an HTML form that allows the user to
enter the username and the property in form fields.

A request command in the showUserProp.shtml page can reference the user and
property variables by preceding the variable name with the $ character. In this
example, the variables are $user and $property.

A request command in the showUserProp.shtml page could look like:

<!--#request URL="/$user/work?SQLString=
'select $property from employee'&name=$user" -->

The LiveHTML cartridge expands the above request to:

/chris/work?SQLString=select+job%20title+from+employee&name=chris

The LiveHTML cartridge expects content within single quotes to be a non-encoded
URL since it performs the encoding. You must correctly encode the rest of the
HTTP URL.

SSI Examples
■ Displaying Date and Time

■ Getting Information About the Current File

■ Getting Information About Other Files

■ Displaying Browser Information

■ Providing Host and Server Information

■ Accessing a Database
3-8 Oracle Application Server 4.0 Developer’s Guide: LiveHTML and Perl Applications

SSI Examples
Displaying Date and Time
The following config command defines a date and time format, which is used by
the echo command.

<!--#config timefmt="%A, %B %d, %Y, at %I:%M %p"-->
<p>GMT date/time is
<!--#echo var="DATE_GMT"-->
<p>LOCAL date/time is
<!--#echo var="DATE_LOCAL"-->
<p>Updated on
<!--#echo var="LAST_MODIFIED"-->

This produces the following:

GMT date/time is Friday, August 23, 1996, at 03:14 AM
LOCAL date/time is Thursday, August 22, 1996, at 08:14 PM
Updated on Tuesday, August 13, 1996, at 03:42 AM

Getting Information About the Current File
Given the following lines:

This document is <!--#echo var="PATH_TRANSLATED"-->
Its virtual path is <!--#echo var="DOCUMENT_URI"-->

On UNIX, you would see:

This document is /oracle/test/livehtml/sstest.html
Its virtual path is /sample/livehtml/sstest.html

On NT, you would see:

This document is \oracle\test\livehtml\sstest.html
Its virtual path is \sample\livehtml\sstest.html

Getting Information About Other Files
The fsize and flastmod commands allow you to get the file size and last modifi-
cation date of any file on the server rather than just the current document.

For example, the following lines:

<!--#config sizefmt="bytes"-->
<p>This gives the file size of 'sstest.html' in bytes:
<!--#fsize file="sstest.html"-->

generate the following information:
Using Server-Side Includes 3-9

SSI Examples
This gives the file size of 'sstest.html' in bytes: 6405 bytes

The following lines:

<!--#config sizefmt="abbrev"-->
<p>This gives the file size of 'sstest.html' in bytes:
<!--#fsize file="sstest.html"-->

generate

This gives the file size of 'sstest.html' in kilobytes: 6 Kbytes

Displaying Browser Information
You can display the user’s browser and version back to the user that he or she is
using to read your pages.

The line:

<p>You are using <!--#echo var="HTTP_USER_AGENT" -->

produces the following:

You are using Mozilla/4.02 [en] (X11; I; SunOS 5.5.1 sun4u)

Providing Host and Server Information
The following line:

<p>Host: <!--#echo var="REMOTE_HOST" -->
(<!--#echo var="REMOTE_ADDR" -->)
<p>Server: <!--#echo var="SERVER_NAME" -->
(<!--#echo var="SERVER_SOFTWARE" -->)

generates the following information:

Host: test.us.oracle.com (123.45.67.89)
Server: test.us.oracle.com (Oracle_Web_Listener/4.0.6.3.0EnterpriseEdition)

Accessing a Database
The following command uses ICX to invoke a PL/SQL cartridge to run the myproc
stored procedure. The results from the stored procedure are placed in the Live-
HTML page. The example assumes that the /db/plsql/ virtual path is associated
with a PL/SQL cartridge.

<!--#request url="/db/plsql/myproc"-->
3-10 Oracle Application Server 4.0 Developer’s Guide: LiveHTML and Perl Applications

Writing
4

Writing Scripts

The scripting feature of the LiveHTML cartridge enables you to write embedded
scripts and flow-control tags within HTML pages. Scripts can be inserted between
standard HTML tags. These constructs allow you to perform more complex com-
mands than those supported by Server-Side Includes (SSI). For example, you can
write scripts to determine the user of your web application and use that user’s
name to determine the contents of the rest of the page. Flow-control tags (“if-then”
statements) enable you to execute scripts or return HTML data on the page to the
client only when the expression is true. For example, you can check the browser
that the user is using, and return different HTML data depending on the browser
type.

You use the scripting feature to access Web Application Objects from within Live-
HTML pages. Web Application Objects provide a framework with runtime services
for building transactional and non-transactional web applications. See Chapter 5,
“Developing with Web Application Objects” for more information.

Currently, the cartridge runtime which has a Perl interpreter supports Perl version
5.004_01 as the scripting language. You can get the latest information about the Perl
language from http://www.perl.org. You can also download many useful modules
for the LiveHTML Perl interpreter from http://www.perl.com/CPAN-local.mod-
ules/00modlist.long.html. These modules can extend the functionality of your
scripts. If you decide to upgrade the Perl interpreter, refer to Chapter 14, “Upgrad-
ing your Perl Interpreter”.

Note: The LiveHTML Perl interpreter is database-enabled using
the Perl DBD::Oracle driver and DBI API. See “Querying and
Retrieving Data from an Oracle Database” on page 8 for a working
example of querying an Oracle database.
 Scripts 4-1

Filename Extensions for Scripts
Contents
■ Filename Extensions for Scripts

■ Enabling and Disabling the Scripting Feature

■ Specifying Scripting Languages

■ Embedding Scripts

■ Using CORBA Objects in Scripts

■ Scripting Examples

Filename Extensions for Scripts
Pages for the LiveHTML cartridge that contain scripts are called HTML scripting
pages (HSP). The default extensions set up for scripting pages are hsp , hsa , asp ,
and asa .

You can use other extensions if you add them to the Script Page Extension field in
the LiveHTML Parameters configuration form in the Oracle Application Server
Manager.

Enabling and Disabling the Scripting Feature
You can enable/disable the scripting feature. In the Cartridge Parameters page (in
the Oracle Applications Server Manager) of a LiveHTML cartridge, check or
uncheck the “Enable Script Execution” box.

If unchecked, scripts present in files with extensions specified under “Script Page
Extension” are not processed by the cartridge. Those files are not parsed by the car-
tridge either. If the box is checked, scripts in those files are processed.

Specifying Scripting Languages
There are three ways of specifying scripting languages for LiveHTML pages. They
differ in their scope of applicability.

Overall Default Language
The default scripting language for all pages belonging to a LiveHTML cartridge is
specified in the cartridge configuration page in the Oracle Application Server Man-
ager (see “Cartridge Configuration” in Chapter 2). This default language is applica-
ble to all scripts unless an alternate language is specified using the methods
detailed in the following two sections.
4-2 Oracle Application Server 4.0 Developer’s Guide: LiveHTML and Perl Applications

Embedding Scripts
For a Particular Page
If you want to use another scripting language for a particular page, you can use the
<% @Language=language %> tag to specify that language. The language speci-
fied applies to the scope of that page for scripts in the <%...%> and <%=...%>
tags. If <% @Language=language %> is not present in a page, the default lan-
guage specified in the cartridge configuration form applies to scripts inside the
<%...%> and <%=...%> tags.

For a Script Block Within a Page
In certain situations, for a block of script, you may want to use a scripting language
different from the default specified in Oracle Application Server Manager or in
<% @Language=language %>. For these situations, use the <SCRIPT>...
</SCRIPT> tag with its LANGUAGE attribute. Refer to the following section for
more information.

Embedding Scripts
There are several tags that allow you to embed scripts in LiveHTML pages. These
are:

■ <%...%>

■ <%= ... %>

■ <SCRIPT>...</SCRIPT>

The following table summarizes when to use each tag:

Note: For the current release, only the “Perl ” value is supported.
More languages will be supported in future releases. Also, the Perl
interpreter used in a LiveHTML cartridge server process is instanti-
ated only once inside the process. To avoid unexpected results
from your LiveHTML application, you should always initialize all
the variables you use inside your LiveHTML scripts.

Table 4–1 Usage of scripting tags at glance

Tag When to Use

<%...%> Use when the scripts enclosed by this tag are written in the
default language of the page.
Writing Scripts 4-3

Embedding Scripts
<%...%>
The <%...%> tag encloses scripts in the language specified by the <% @Language
= language %> tag of each LiveHTML page. If this tag is not present in a page,
the default scripting language specified in the cartridge configuration form is appli-
cable for the scripts. You can interweave the standard HTML tags with this tag
using control structures to determine which HTML tags are sent to the client. You
can also embed these tags within other HTML tags. This can be useful for dynami-
cally generated links (the HREF attribute of the A tag).

Syntax
<%
script
%>

Examples
The following example prints out the text “String to print” in incremental font sizes
ranging from 3 to 7.

<%
$str = "String to print";
for ($fontsize = 3; $fontsize < 8; $fontsize++) {

%>
<font size = <% $Response->write($fontsize) %> >
<p> <% $Response->write($str) %>

<% } %>

<%=...%> Use when you need to output the result of an expression as
part of the HTML output of a LiveHTML page.

<SCRIPT>...</SCRIPT> Use when the script block enclosed by this tag is not written in
the default language of the page. The language used in the
script block is specific to this block alone.

Note: The results of scripts in the <SCRIPT>...</SCRIPT> or
the <%...%> tags are seen by the user only if the script writes
them through the write method of the Response object. For exam-
ple, in Perl, the syntax is $Response->write("text"); .

Table 4–1 Usage of scripting tags at glance

Tag When to Use
4-4 Oracle Application Server 4.0 Developer’s Guide: LiveHTML and Perl Applications

Embedding Scripts
The following example shows how to use an if-then statement to determine which
HTML statement to send to the client.

<%
if ($something_failed) {

%>
<p>An error occurred while processing your request.
<% } else { %>
<p>Here are the results of your request.
<% } %>

<%= ... %>
The <%= expression %> tag displays the value of the specified expression which
is written in the language specified in the <% @Language=language %> tag.

Syntax
<%= expression %>

Example
The following script prints “10 ... 9 ... 8 ... 7 ... 6 ... 5 ... 4 ... 3 ... 2 ... 1 ... Fire!”:

<% for ($countdown = 10; $countdown > 0; $countdown--) { %>
<%= $countdown %> ...
<% } %>
Fire!

<SCRIPT>...</SCRIPT>
This tag allows you to specify a specific language to use for the script block that it
encloses. The language can be different from that specified in the
<% @Language=language %> tag or in the cartridge configuration form.

Syntax
<SCRIPT

RUNAT=SERVER

Note: The scope of variables is not limited to just one script block.
Variables persist for script blocks over the entire page.
Writing Scripts 4-5

Using CORBA Objects in Scripts
[LANGUAGE=language]>
script
</SCRIPT>

Attributes
RUNAT - specifies that the tag is to be processed by the LiveHTML cartridge and not
the client. This attribute is required for the LiveHTML cartridge to process the
script. If not specified, the tag is processed by the client browser. The only allowed
value currently is SERVER.

LANGUAGE - specifies the language of the script. Currently, “Perl ” is the only
allowed value. If this attribute is not specified, the default language specified in the
cartridge configuration form is assumed.

Example
The following example displays a thank you message.

<SCRIPT RUNAT=SERVER LANGUAGE=Perl>
$Response->write("Thank you for using our interactive web application

.\n");
</SCRIPT>

Using CORBA Objects in Scripts
The <OBJECT> tag declares a CORBA object to be used in scripts in the current
page. Multiple objects can be declared in the same page using this tag, but the
scope of each declaration spans only that page. The object can then be referenced in
scripts using the specified ID.

Syntax
<OBJECT

RUNAT = "SERVER"
ID= identifier
OR = obj_ref_string | CARTRIDGE = cartridge_identifier>

Attributes
RUNAT - specifies that the tag is to be processed by the LiveHTML cartridge and not
the client. This attribute is required for the LiveHTML cartridge to declare the
object. If not specified, the tag is processed by the client browser. The only allowed
value currently is SERVER.
4-6 Oracle Application Server 4.0 Developer’s Guide: LiveHTML and Perl Applications

Using CORBA Objects in Scripts
ID - specifies the name by which the instance of the object can be referenced in
scripts. This attribute is required.

One of the OR or CARTRIDGE attributes is required to locate the object.

OR - specifies the object reference in string form.

CARTRIDGE - specifies the name of the CORBA cartridge that defines and instanti-
ates the object. The cartridge is managed by the Resource Manager.

Examples
The following example determines the value of the HREF attribute from the Menu
object, which is defined in the <OBJECT> tag.

<OBJECT
RUNAT = "SERVER"
ID = "Menu"
CARTRIDGE = "gui_set/menu_obj">

...
<A HREF="<%= $Menu->GetRef($date) %>">Daily Menu
<!-- GetRef() is a method in the $Menu object -->
<!-- $date contains a date that the user could have entered earlier -->

The next example illustrates the use of the <OBJECT> tag to define three CORBA
objects which are used in the embedded Perl script in a LiveHTML page. Each
object is referenced using either OR or CARTRIDGE.

<!-- The embedded Perl scripts below retrieve balances from three accounts
belonging to the same person using three CORBA object "account managers". -->

<HTML>
<% $AccName = "Robert"; %>
<TITLE><%= $AccName %>'s Account Information</TITLE>
<BODY>

<!-- CORBA object referenced using object reference (for checking information).
-->
<OBJECT RUNAT="SERVER" ID="AccountManagerChecking"
OR="IOR:000000000000001C49444C3A42616E6B2F4163636F756E744D616E616765723A312E300
000000001000000000000009C000101000000000A7270616E672D73756E00158800000080000100
009C82B05A0000000000000032000000000000000000031E3316632923000000000010059000000
00A7270616E672D73756E00000000000006313233383900000000000000000000050000001C4944
4C3A42616E6B2F4163636F756E744D616E616765723A312E30000000000A7069643A31323338390
000000000000000000000">
Writing Scripts 4-7

Scripting Examples
<!-- Checking account balance. -->
<% $AccountChecking = $AccountManagerChecking->open($AccName); %>
Checking account balance is $<%= $AccountChecking->balance() %><P>

<!-- CORBA object referenced using the name of the cartridge which will
instantiate it (CD account balance). -->
<object RUNAT="SERVER" ID="AccountManagerCD" Cartridge="AccountCApp/AccountC">

<!-- CD account balance. -->
<% $AccountCD = $AccountManagerCD->open($AccName); %>
CD account balance is $<%= $AccountCD->balance() %><P>

</BODY>
</html>

Generating IDL Interfaces of CORBA Objects for use in LiveHTML Pages
For the above example to work, IDL interfaces or client stubs for the CORBA object
should already be generated so that the embedded scripts in the LiveHTML page
can use the interfaces. To do this, the IDL-to-Perl compiler (perlidlc) that comes
with Oracle Application Server is used. Sample command line usage of the com-
piler is shown below. For detailed information about using generated PERL bind-
ings for IDL interfaces, please see Chapter 7, “Accessing CORBA Objects from Perl
Scripts”.

prompt> perlidlc -i -I $ORACLE_HOME/public -I $ORACLE_HOME/ows/apps/eco4j/
MyAccount $ORACLE_HOME/ows/apps/eco4j/server/MyAccount/
OASInterfaces.idl

where MyAccount is the name of your application and OASInterfaces.idl is the file
containing the IDL source for an ECO/Java object.

For a non-JCORBA object, the command line will look like:

prompt> perlidlc -i -I <include_directory> filename.idl

where <include_directory> contains include files specified in the IDL source
filename.idl.

Scripting Examples
The following examples show how simple embedded scripts can be used. More
examples can be found in the next few chapters as features are described.
4-8 Oracle Application Server 4.0 Developer’s Guide: LiveHTML and Perl Applications

Scripting Examples
Getting the Perl Version Number
The following script uses the $] variable to get the version of Perl used by the Live-
HTML cartridge:

<p>The LiveHTML cartridge uses Perl version
<%= $] %>.

Invoking a Function in an Included Perl Module
The following script invokes the ctime function in the Time::localtime mod-
ule:

<p>The local time is:
<% use Time::localtime; %>
<%= ctime(time()) %>
Writing Scripts 4-9

Scripting Examples
4-10 Oracle Application Server 4.0 Developer’s Guide: LiveHTML and Perl Applications

Developing with Web Applic
5

Developing with Web Application Objects

Oracle Application Server provides a versatile and extensible set of objects that you
can access from your LiveHTML scripts. This set of objects form a basic framework
that provides runtime services required to build transactional web-based applica-
tions. The objects allow your scripts to query and modify the execution or runtime
environment of a LiveHTML page. Using them, your scripts can perform tasks
such as obtaining HTTP header information, retrieving and setting cookies, creat-
ing or accessing CORBA-compliant objects, making requests to other cartridges,
committing or rolling-back transactions. (For information about transactional Web
Application Objects, refer to Chapter 6, “Transactions in LiveHTML”).

With Web Application Objects, you can extend the functionality of your applica-
tions by allowing complex custom logic to be developed as external reusable com-
ponents (e.g. ECO/Java and Enterprise Java Beans objects, JWeb and PL/SQL
cartridges). These components can be used in your web applications by invoking
them from your LiveHTML scripts.

Contents
■ What are Web Application Objects

■ Scripting with Web Application Objects

■ Summary of Methods and Attributes

What are Web Application Objects
Web Application Objects provide a set of objects for you to interact with the runt-
ime environment of web applications. They are implemented as CORBA objects
with IDL interfaces, and they encapsulate lower level operations so that you can
focus on developing content with enhanced functionality provided by Oracle
Application Server.
ation Objects 5-1

What are Web Application Objects
Usage examples of Web Application Objects are operations such as retrieving
HTTP header values, setting cookies, controlling the transactional attributes of a
page, accessing objects and methods in other cartridges.

The following table gives a summary of the currently available Web Application
Objects.

These objects have methods and attributes which you can use to define their charac-
teristics. To use these objects, you have to invoke their methods, and read or change
their attributes.

Table 5–1 Overview of Web Application Objects

Object Set Object type Description

Core Request The HTTP request sent by the user.

Response The server’s response to the user’s request.

HTTPListener The web listener that received the request.

Server For creating objects and managing the object factory.

Document An object representing the LiveHTML page it is ref-
erenced in.

ObjectFactory For creating or retrieving objects in the Oracle Appli-
cation Server environment.

Collection/
Container

Vector A dynamically resizable array utility.

Iterator An object to move between elements in containers.

Hashtable A utility for retrieving name-value pairs quickly.

I/O HTTPInputStream Stream for reading data sent by the client.

HTTPOutputStream Stream for writing data to the client.

ICX (inter-
cartridge
exchange)

ICXRequest For making inter-cartridge requests in the Oracle
Application Server. Uses URL addressing to target a
cartridge. This object supports transactional context
propagation.

ICXResponse For retrieving data from other cartridges. This object
supports transactional context propagation.

Utility Cookie For setting and getting cookies.

Transaction TxContent To commit or rollback a transaction and obtain trans-
actional status information.
5-2 Oracle Application Server 4.0 Developer’s Guide: LiveHTML and Perl Applications

Scripting with Web Application Objects
Scripting with Web Application Objects
Web Application Objects have attributes and methods that you can use for develop-
ing your web application. You access the objects through scripts embedded in your
LiveHTML page. (See the “Embedding Scripts” on page 4-3 section for scripting
details.) The syntax for referencing the objects and their methods and attributes fol-
lows the syntax of the scripting language. Currently, the supported language is Perl
and our discussion will center around that.

Using Perl
For scripts written in Perl, you can reference all the objects’ methods and attributes
through the following five pre-defined variables:

$Server
$Document
$Request
$Response
$TxContext (detailed in Chapter 6, “Transactions in LiveHTML”)

These five variables are created automatically; you do not have to declare or initial-
ize them in any way before you can use them. Also, Perl is case-sensitive; note that
the first letter of the object name is in uppercase.

From a scripting syntax perspective, methods and attributes of Web Application
Objects can be invoked or accessed directly using one of the appropriate variables
and the arrow (->) operator without having to specify the owner objects. For exam-
ple, to invoke the write() method of the OutputStream object, the syntax is:

$Response->write("Hello World\n");

The following table illustrates the groupings of Web Application Objects under the
five Perl variables:

Hence, to retrieve the svr_name attribute of the Request object, you can use the
$Request variable:

$sname = $Request->svr_name();

$Server $Request $Response $Document $TxContext

Server
ObjectFactory

Request
HTTPListener
InputStream

Response
OutputStream

Document TxContext
(Refer to
Chapter 6,
“Transactions
in LiveHTML”)
Developing with Web Application Objects 5-3

Scripting with Web Application Objects
The remaining Web Application Objects fall into two groups: collections and util-
ity/ICX objects:

Collection objects consist of the HashTable (key-value) and Vector (dynamic array)
container objects and the Iterator object which performs operations on the latter
two. These objects are useful for data manipulation. To access methods and
attributes of the container objects, you need to use a variable which contains a refer-
ence to either object. For example, if you want to retrieve HTTP header information
into HashTable, you can use the get_headers() method of the Request object to
obtain a reference to the headers. This reference can then be used by the Iterator
object’s methods to manipulate the header data. The following script illustrates:

$headers = $Request->get_headers(); # obtain a reference for the headers
$keylist = $headers->keys(); # obtain a reference for the keys of the header hash
$key = $keylist->get_next_element()->extract();
$value = $headers->get_value($key)->extract(); # value corresponding to key name is

retrieved

Utility/ICX objects provide added functionality to the web application object
framework. Each of them has specific functions. Examples of use are in inter-car-
tridge exchanges and cookie operations. To use a utility/ICX object in Perl, you
need to specify the package name that contains it. You also need to obtain an object
reference using the get_object() method of the Server object. The following script
performs these actions for a Cookie object (applies to ICX objects also):

Note: Some attributes are read-only and cannot be set.

Collection Objects Utility/ICX Objects

Vector

Iterator

HashTable

Cookie
(in package oracle::OAS::WAO::HTTP::Cookie)

ICXRequest
(in package oracle::OAS::WAO::OASFrmkObject)

ICXResponse
(in package oracle::OAS::WAO::OASFrmkObject)

Note: The extract() method is needed because the return type of
header information is of the IDL Any type which doesn't map to
any Perl types.
5-4 Oracle Application Server 4.0 Developer’s Guide: LiveHTML and Perl Applications

Scripting with Web Application Objects
Load the Perl package containing the Cookie object
use oracle::OAS::WAO::HTTP::Cookie;
$cookie = oracle::OAS::WAO::HTTP::Cookie->narrow($Server->get_object("wao://Cookie"));
the narrow method is used to narrow the generic CORBA object returned by
Server.get_object to the correct interface

The following section provides examples to illustrate scripting with Web Applica-
tion Objects.

Examples
The examples are written in the Perl language. To use these scripts, you need to
place them within the <% ... %> tags.

Using the Response Object to Return Data to the Client
The following example uses the sout attribute of the Response object to get the out-
put stream object, and then calls the output stream’s write_wstring() method
to return string data to the client.

<%
for ($i = 1; $i <= 5; $i += 2) {

$Response->sout->write_wstring("The value of i is $i \n");
}
%>

The output of this script is:

The value of i is 1
The value of i is 3
The value of i is 5

Using the write() method of the Response object produces the same result. That is,

$Response->write("The value of i is $i \n");

The latter syntax is recommended as it invokes the same operation with shorter
syntax than the first.

Displaying HTTP Headers
Using the Request object, you can display the HTTP headers in a request. The script
looks like:

<%
Load the package for HTTP request
use oracle::OAS::WAO::HTTP::HTTPRequest;
Developing with Web Application Objects 5-5

Scripting with Web Application Objects
$headerhash = $Request->get_headers(); # headerhash is a hashtable
cycle through the contents of the headerhash hashtable
$keylist = $headerhash->keys(); # keylist is an Iterator
while ($keylist->has_more_elements()) {

$a_key = $keylist->get_next_element(); # get the next key
$val = $headerhash->get_value($a_key); # get the value for the key
$Response->write("$a_key = $val \n");

}
%>

Note that this example provides an idea of how to use the Request, Iterator, and
Hashtable objects.

Getting the Physical Path from a Virtual Path
The following example gets the corresponding physical path from a virtual path.

<%
$listener = $Request->listener();
$ppath = $listener->map_path("/testpages/index.html");
%>

Setting a Cookie
The Response object can be used for sending cookies to clients. This is illustrated in
the following example:

<%
Load the package for Cookie
use oracle::OAS::WAO::HTTP::Cookie;

Utilize the predefined variable $Server to instantiate a
cookie object. Since $Server->get_object returns a generic
CORBA object, you need to narrow it to the right interface,
i.e. oracle::OAS::WAO::HTTP::Cookie. That will give you an empty cookie.
my $cookie = oracle::OAS::WAO::HTTP::Cookie->narrow($Server->

get_object("wao://Cookie"));

set the various attributes of the cookie like name, value, domain,...
$cookie->name("user");
$cookie->value("john");
$cookie->path("");
$cookie->domain("www.foo.com");
$cookie->expires("31-DEC-99 GMT");
5-6 Oracle Application Server 4.0 Developer’s Guide: LiveHTML and Perl Applications

Scripting with Web Application Objects
Finally, set the cookie in the "Response" object
$value = $Response->set_cookie($cookie);
%>

Retrieving a Cookie
<%
Load the package for Cookie and create an object reference to Cookie
use oracle::OAS::WAO::HTTP::Cookie;
my $cookie = oracle::OAS::WAO::HTTP::Cookie->narrow($Server->

get_object("wao://Cookie"));

Retrieve our cookie "user"
my $cookie = $Request->get_cookie("user");
use Oracle::hlpr::Excp;
If there is no exception raised when retrieving the cookie, implying cookie
is set in client's browser, the cookie value is valid.
if (!Oracle::hlpr::Excp->isexcp($cookie)) {

$cookie = $cookie->extract();
}
%>

Invoking a PL/SQL Procedure
<%
Load the package for ICXRequest and create an object reference to ICXRequest
use oracle::OAS::WAO::OASFrmkObject;
my $icx_object = oracle::OAS::WAO::OASFrmkObject->narrow($Server->

get_object("wao://ICXRequest"));

initialize the object with the URL address of the target
$icx_object->init = ("http://machine/plsqlapp/cartx/procedure_name");

set the Http request method to GET
$icx_object->set_method(GET);

create a new ICX connection
$resp_object = $icx_object->connect();

grab the result of the procedure
$foo = $resp_object->content();
...
%>
Developing with Web Application Objects 5-7

Scripting with Web Application Objects
Querying and Retrieving Data from an Oracle Database
<!-- The following script logs on to an Oracle database, queries for data and
retrieves them; the Perl DBD::Oracle driver is used with the DBI API. HTML
formatting tags are included for completeness -->

<HTML>
<TITLE>OAS LiveHTML Scripting Example</TITLE>
<BODY BGCOLOR="#FFFFFF">
<%
this subroutine sets up the DB connection
sub set_connection {

my ($cs, $name, $pwd)=@_;
use DBI;
$logon = DBI->connect($cs, $name, $pwd,"Oracle") ||

$Response->write("Failed to logon: $DBI::errstr\n");
}

this subroutine returns the values of a query
sub get_users {

my($sqlstmt) = @_;
$query=$logon->prepare("select username from all_users") ||

$Response->write("Failed to perform query
$DBI::errstr\n");

$query->execute() ||
$Response->write("Failed to perform query $DBI::errstr\n");

my $i=0;
my @emp;
while(@fields = $query->fetchrow()){

need to add the row to an array
@emp->[$i]=@fields[0];
$i++;

}
return @emp;

}

sub get_user_details {
my ($username) = @_;
$query=$logon->prepare("select * from all_users

where username = '$username'") ||
$Response->write("Failed to perform query

$DBI::errstr\n");
$query->execute() ||
$Response->write("Failed to perform query $DBI::errstr\n");
my @fields=$query->fetchrow();
return @fields;
5-8 Oracle Application Server 4.0 Developer’s Guide: LiveHTML and Perl Applications

Scripting with Web Application Objects
}
%>

<H2>Server Side Scripting Demonstration</H2>
<P>
<HR ALIGN="LEFT" WIDTH="75%" SIZE="5">
</P>

<%
Main

determine if form data was sent
my $formvalue=$Request->form();
if($formvalue){

my $username=$formvalue->get_value("username")->extract();
my @details=get_user_details($username);

%>
<!-- display user details -->
<!-- outer table -->
<TABLE BORDER="2" CELLPADDING="10" CELLSPACING="0" WIDTH="75%">
<TR>
<TD WIDTH="33%" BGCOLOR="#FFFFCC">USERNAME</TD>
<TD WIDTH="33%" BGCOLOR="#FFFFCC">USER_ID</TD>
<TD WIDTH="33%" BGCOLOR="#FFFFCC">CREATED</TD>
</TR>
<TR>
<%
my $i=0;
for(@details){
%>
<TD WIDTH="33%" BGCOLOR="#66CCCC"><%=@details[$i++]%></TD>
</TR>
</TABLE>

<% } else {%>

<TABLE BORDER="2" CELLPADDING="10" CELLSPACING="0" WIDTH="75%" HEIGHT="198">
<TR>
<TD WIDTH="100%" BGCOLOR="#FFFFCC">Please select a User from below</TD>
</TR>
<TR>
<TD WIDTH="100%">
<P>
<!-- inner table -->
<FORM ACTION="topics.hsp">
Developing with Web Application Objects 5-9

Scripting with Web Application Objects
<INPUT TYPE="HIDDEN" NAME="GETDETAILS" VALUE="TRUE">
<TABLE BORDER="0" WIDTH="100%" CELLSPACING="5" CELLPADDING="5">
<!-- add each of the users here -->
<%
set_connection("machine_name","scott","tiger");
my @users=get_users();
my $i=0;

for(@users){
%>

<TR>
<TD WIDTH="18%" BGCOLOR="#66CCCC">
<input type="radio" name="username" value="<%=@users[$i]%>"></TD>
<TD WIDTH="82%" BGCOLOR="#66CCCC"><%=@users[$i++]%></TD>
</TR>

<% } %> <!-- for loop -->
<TR>
<!-- the padding for the buttons -->
<TD WIDTH="18%"> </TD>
<TD WIDTH="82%"> </TD>
</TR>
<TR>
<!-- the form submit buttons -->
<TD ALIGN="RIGHT" WIDTH="18%"> </TD>
<TD ALIGN="RIGHT" WIDTH="82%">
<INPUT TYPE="SUBMIT" VALUE="Show User Details">
<INPUT TYPE="RESET">
</TD>
</TR>
</TABLE> <!-- inner-->
</FORM>
</P>
</TD>
</TR>
</TABLE> <!-- outer -->

<% } %> <!-- if statement -->
</BODY>
</HTML>
5-10 Oracle Application Server 4.0 Developer’s Guide: LiveHTML and Perl Applications

Summary of Methods and Attributes
Summary of Methods and Attributes
The following table lists the attributes and methods that you can use for each web
application object:

Table 5–2 List of methods and attributes

Object Methods Attributes

Request get_header()
get_headers()
get_cookie()
get_cookies()
get_request_info()
get_cgivar()
init()
destroy()

id
protocol
protocol_major_ver
protocol_minor_ver
svr_name
svr_port
form
query_string_vars
cgivars
sin
content_len
content_type
listener
auth_type
method

Response set_header()
set_headers()
set_cookie()
set_cookies()
end()
redirect()
set_status()
set_status_and_msg()
set_expire_length()
set_expire_date()
set_content_len()
set_content_type()
send_headers()
write()
init()
destroy()

id
sout
keep_alive
auto_send
headers_sent

HTTPListener map_path() host_name
port
Developing with Web Application Objects 5-11

Summary of Methods and Attributes
Cookie name
value
path
domain
expire
secure

OutputStream close()
flush()
write()
write_wstring()
write_wchars()

InputStream ready()
close()
read()
read_wchars()
mark()
reset()
skip()

mark_supported

Vector expand()
add_element()
add_elements()
get_element()
get_elements()
set_element()
set_elements()
insert_element()
insert_elements()
remove_element()
remove_elements()
elements()
lock()
unlock()
init()
destroy()

capacity
num_elements
capacity_increment
auto_resize

Table 5–2 List of methods and attributes

Object Methods Attributes
5-12 Oracle Application Server 4.0 Developer’s Guide: LiveHTML and Perl Applications

Summary of Methods and Attributes
Iterator has_more_elements()
get_next_element()
get_next_elements()
skip()
reset()
clone_iterator()
init()
destroy()

Hashtable clear()
aggregate()
get_value()
get_values()
set_value()
set_values()
remove_value()
remove_values()
keys()
lock()
unlock()
init()
destroy()

num_keys

ICXRequest set_method()
set_header()
set_headers()
set_content()
set_contents()
set_auth_info()
connect()
enable_transaction()
disable_transaction()
init()
destroy()

ICXResponse get_header()
get_headers()
init()
destroy()

status_code
realm
reason_phrase
http_version
using_proxy
content

ObjectFactory get_object()

Table 5–2 List of methods and attributes

Object Methods Attributes
Developing with Web Application Objects 5-13

Summary of Methods and Attributes
Server get_object_factory()
set_object_factory()
get_object()
get_object_by_type()
init()
destroy()

Document tx_attr
dft_script_language

Table 5–2 List of methods and attributes

Object Methods Attributes
5-14 Oracle Application Server 4.0 Developer’s Guide: LiveHTML and Perl Applications

Request
Request

An instance of the Request object is created when a client sends a request to a Live-
HTML cartridge. This object can be used for extracting client request information
(e.g. HTTP header or query string information).

Table 5–3 Request methods

Method Syntax and Description

get_header() wstring get_header(in wstring header_name)
raises (oracle::OAS::Util::NoSuchElement)

Returns the value of the specified HTTP header header_name .

get_headers() oracle::OAS::Util::Hashtable get_headers()

Returns all HTTP headers as a Hashtable.

get_cookie() any get_cookie(in wstring cookie_name)
raises (oracle::OAS::Util::NoSuchElement)

Returns the value of the specified cookie cookie_name .

get_cookies() oracle::OAS::Util::Hashtable get_cookies()

Returns all cookies sent by the client.
Developing with Web Application Objects 5-15

Request
get_request_info() wstring get_request_info(in HTTPRequestInfoType type)

Returns information associated with the request. type is one of:

uri - the request URI

url - the request URL

listener_type - the type and version of the listener

virtual_path - the virtual path for the request

physical_path - the physical path for the request

query_string - the query string

language - comma-delimited list of languages

encoding - comma-delimited list of encodings

mime_type - MIME type

user_id - user ID

password - password

ip_addr - IP address in a.b.c.d notation

get_cgivar() wstring get_cgivar(in wstring name)

Returns the value of the specified CGI environment variable.

init() void init(in any init_param)

Initializes this object. init_param is optional.

destroy() void destroy()

Destroys this object.

Table 5–4 Request attributes

Attribute
Read or
Read/Write Type Description

id R long The identifier for this instance of the Request object.

protocol R string The protocol of the request.

protocol_major_ver R long The major version of the request protocol.

Table 5–3 Request methods

Method Syntax and Description
5-16 Oracle Application Server 4.0 Developer’s Guide: LiveHTML and Perl Applications

Request
protocol_minor_ver R long The minor version of the request protocol.

svr_name R wstring The name of the server that received this request.

svr_port R long The port number on which this request is received.

form R oracle::OAS::
Util::
Hashtable

The values of form elements in the HTTP request body
returned in a hashtable.

query_string_vars R oracle::OAS::
Util::
Hashtable

The values of variables in the HTTP query string
returned in a hashtable.

cgivars R oracle::OAS::
Util::
Hashtable

Retrieves CGI 1.1 variables associated with the request
and returns them in a hashtable.

sin R oracle::OAS::
IO::
InputStream

An instance of the InputStream object representing the
request entity data from the client.

content_len R long The size of the request entity data in bytes.

content_type R string The MIME type of the request entity data.

listener R HTTPListener The HTTP listener with which this request is associated.

auth_type R string The authentication scheme of the request. This can be
one of the standard schemes (basic, oracle, ...) or a cus-
tom scheme.

method R string The method of the request. Possible values are “HEAD”,
“GET”, or “POST”.

Table 5–4 Request attributes

Attribute
Read or
Read/Write Type Description
Developing with Web Application Objects 5-17

Response
Response

The LiveHTML cartridge creates an instance of the Response object and sends it to
the client in response to a request. This object can be used to send data to the client.

Table 5–5 Response methods

Method Syntax and Description

set_header() void set_header(in string name, in string value)

Adds a new HTTP header using the name and value pair specified.

set_headers() void set_headers(in oracle::OAS::Util::Hashtable headers)

Adds HTTP headers contained in the hashtable.

set_status() void set_status(in long status_code)

Sets the status code to be returned.

set_status_and_msg() void set_status_and_msg(in long status_code , in wstring status_msg)

Sets the status code and status message to be returned.

set_expire_length() void set_expire_length(in long expire_length)

Specifies how long before a cached page on the browser expires.

set_expire_date() void set_expire_date(in oracle::OAS::Util::Date expire_date)

Specifies the date and time on which a page cached on the browser expires.

set_content_len() void set_content_len(in long content_len)

Sets the content length of the response.

set_content_type() void set_content_type(in wstring content_type)

Sets the content type of the response.

set_cookie() void set_cookie(in oracle::OAS::WAO::HTTP::Cookie cookie)

Sets a cookie to be sent back to client.

set_cookies() void set_cookies(in oracle::OAS::Util::Hashtable cookies)

Sets cookies to be sent back to the client.

send_headers() void send_headers()

Send all the headers that have been set so far to the client.

write() void write(in wstring msg)

Sends a string to the client.
5-18 Oracle Application Server 4.0 Developer’s Guide: LiveHTML and Perl Applications

Response
end() void end()

Stops processing and returns the result to the client. This method calls flush() on the
OutputStream.

redirect() void redirect(in string new_url)

Sends a redirect message to the browser, causing it to attempt to connect to the speci-
fied URL.

init() void init(in any init_param)

Initializes this object. init_param is optional.

destroy() void destroy()

Destroys this object.

Table 5–6 Response attributes

Attribute
Read or
Read/Write Type Description

id R long The identifier for this instance of the object.

sout R oracle::OAS::
IO::
OutputStream

Response output stream.

auto_send R/W boolean If true , headers are sent after each call that modifies the
response header.

headers_sent R boolean If true , headers have already been sent.

keep_alive R/W boolean The value is TRUE if HTTP 1.1 KeepAlive is enabled

Table 5–5 Response methods

Method Syntax and Description
Developing with Web Application Objects 5-19

Cookie
Cookie

The Cookie object is implemented using the attributes shown in the table below.
The object complies to the Netscape 2.0 specification for client cookies. It can be
used to store state information in the client browser for subsequent reuse in future
HTTP requests.

Table 5–7 Cookie attributes

Attribute
Read or
Read/Write Type Description

name R/W wstring The name of this cookie.

value R/W wstring The value of this cookie.

path R/W wstring The URL for which this cookie is presented. If the URL
does not begin with this path, the cookie is not pre-
sented.

domain R/W wstring The domain of this cookie.

expires R/W wstring The expire time of this cookie. If this value is not speci-
fied, the cookie will be discarded when the client quits
the session.

secure R/W boolean The value of the secure flag. The default is false.
5-20 Oracle Application Server 4.0 Developer’s Guide: LiveHTML and Perl Applications

HTTPListener
HTTPListener

This object represents a listener that is managed by Oracle Application Server. It
can be used to retrieve information about the listener, e.g. port number.

Table 5–8 HTTPListener methods

Method Syntax and Description

map_path() string map_path(in string vpath)

Returns the corresponding physical path for the specified virtual path.

Table 5–9 HTTPListener attributes

Attribute
Read or
Read/Write Type Description

host_name R string The name of the machine on which the listener is run-
ning.

port R long The port number at which the listener is listening.
Developing with Web Application Objects 5-21

OutputStream
OutputStream

The output stream enables you to send data to the client. Typically, you would
access an output stream object from the sout attribute of the Response object. For
example:

$Response->sout->write_wstring("Send this line back to the client\n");

This produces the same result as:

$Response->write("Send this line back to the client\n”);

Note: Multibyte characters are not supported in streams.

Table 5–10 OutputStream methods

Method Syntax and Description

close() void close()

Closes the output stream.

flush() void flush()

Flushes the contents of the buffer to be written.

write() void write(in wchar c)

Writes one character to the output stream. This is different from the write() method of
the Response object which handles strings.

write_wstring() void write_wstring(in wstring s)

Writes one or more characters to the output stream. This is similar to the write()
method of the Response object.

write_wchars() void write_wchars(in wcharSeq cSeq)

Writes an array of characters to the output stream.
5-22 Oracle Application Server 4.0 Developer’s Guide: LiveHTML and Perl Applications

InputStream
InputStream

Input streams allow you to read data from clients. You can get an instance of an
input stream from the sin attribute of the Request object.

Note: Multibyte characters are not supported in streams.

Table 5–11 InputStream methods

Method Syntax and Description

ready() boolean ready()

Whether or not the input stream for the application is ready. Each application can have
only one input stream.

close() void close()

Closes the input stream.

read() wchar read()

Gets a character from the input stream.

read_wchars() long read_wchars(inout wcharSeq cSeq)

Gets an array of characters from the input stream.

mark() void mark(in long readLimit)

Place a mark at the specified location.

reset() void reset()

Move the current position to the mark.

skip() long slip(in long nChars)

Skips the specified number of characters and discards them. Return value is the num-
ber of characters skipped.
Developing with Web Application Objects 5-23

InputStream
Table 5–12 InputStream attributes

Attribute
Read or
Read/Write Type Description

mark_supported R boolean Whether or not the input stream supports marks. Marks
work like bookmarks: you mark a place in the stream,
and return to it anytime later.
5-24 Oracle Application Server 4.0 Developer’s Guide: LiveHTML and Perl Applications

Vector
Vector

A vector behaves like a dynamically resizable array. The first index in a vector is 0.

Table 5–13 Vector attributes

Attribute
Read or
Read/Write Type Description

capacity R/W long The current size of the vector. If you decrease the size,
you could lose some existing elements in the vector.

num_elements R/W long The number of elements in the vector.

capacity_increment R/W long The amount by which the vector grows. The vector
grows when you add elements beyond its capacity. The
default value is -1, which enables the vector to choose an
optimal value for resizing.

auto_resize R/W boolean If true, the vector automatically increases its capacity to
accommodate out-of-bounds indexes.

If false (the default), the vector throws an ArrayOutOf-
Bounds exception when an out-of-bounds index is
detected.

Table 5–14 Vector methods

Method Syntax and Description

expand() void expand()

Increases the size of the vector by the amount specified in capacity_increment .

add_element() void add_element(in any element)

Adds the specified element to the vector. The vector resizes automatically, if necessary,
to fit the element.

add_elements() void add_elements(in anySeq elements)

Adds the specified elements to the vector. The vector resizes automatically, if neces-
sary, to fit the elements.
Developing with Web Application Objects 5-25

Vector
get_element() any get_element(in long index)

Returns the element at the specified index.

get_elements() anySeq get_elements(in long begin_index, in long num_elements)

Returns num_elements elements starting at begin_index.

set_element() void set_element(in long index, in any element)

Sets the element at the specified index, overwriting the content of the index. Note that
if auto_resize is false and index is greater than the capacity of the vector, an
ArrayOutOfBounds exception is thrown.

set_elements() void set_elements(in long begin_index, in anySeq elements)

Sets the elements starting at begin_index. Any elements in those indexes will be over-
written. Note that if auto_resize is false and index increases to values greater
than the capacity of the vector, an ArrayOutOfBounds exception is thrown.

insert_element() void insert_element(in long index, in any element)

Inserts an element at the specified index, and the previous elements at the index and
above will be bumped up one position. Note that if auto_resize is false and index
is greater than the capacity of the vector, an ArrayOutOfBounds exception is thrown.

insert_elements() void insert_elements(in long begin_index, in anySeq elements)

Inserts elements starting at begin_index, and the previous elements at those positions
will be bumped up. Note that if auto_resize is false and index is greater than the
capacity of the vector, an ArrayOutOfBounds exception is thrown.

remove_element() void remove_element(in long index)

Removes the element at the specified index, and elements at indexes greater than the
specified index are shifted down by one. Note that removing an element just removes
it from the vector; it does not destroy the element itself. If an element does not exist at
the specified index, a NoSuchElement exception is thrown.

remove_elements() void remove_elements(in long begin_index, in long num_elements)

Removes the elements starting at begin_index, for num_elements. All elements at
indexes greater than (begin_index + num_elements) are shifted down.

elements() Iterator elements()

Creates a new iterator that you can use to traverse the vector to get its contents. To
ensure that the iterator remains valid, you should lock the vector before creating the
iterator and unlock it after destroying the iterator. Ensure that you do not need to mod-
ify the vector while it is locked.

Table 5–14 Vector methods

Method Syntax and Description
5-26 Oracle Application Server 4.0 Developer’s Guide: LiveHTML and Perl Applications

Vector
lock() void lock()

Locks the vector so that its contents cannot be modified.

unlock() void unlock()

Unlocks the vector.

init() void init(in any init_param)

Initializes this object. init_param is optional.

destroy() void destroy()

Destroys this object.

Table 5–14 Vector methods

Method Syntax and Description
Developing with Web Application Objects 5-27

Iterator
Iterator

This is an object to move between elements in containers. An instance of this object
is created for each series of elements. When created, it is positioned before the first
element of the series.

Table 5–15 Iterator methods

Method Syntax and Description

has_more_elements() boolean has_more_elements()

Returns true if the series contains more elements.

get_next_element() any get_next_element()

Returns the next element and moves the iterator to the following element.

get_next_elements() anySeq get_next_elements(in long n)

Returns the next n elements in the series and advances the iterator n positions.

skip() void skip(in long n)

Skips the next n elements.

reset() void reset()

Brings the iterator’s position back to the first element, if one exists.

clone_iterator() Iterator clone_iterator()

Creates a new iterator instance at the same position as the existing one.

init() void init(in any init_param)

Initializes this object. init_param is optional.

destroy() void destroy()

Destroys this object.
5-28 Oracle Application Server 4.0 Developer’s Guide: LiveHTML and Perl Applications

Hashtable
Hashtable

A hashtable is a mechanism that enables you to store and retrieve name-value pairs
quickly.

Table 5–16 Hashtable attributes

Attribute
Read or
Read/Write Type Description

num_keys R long The number of keys in the hashtable.

Table 5–17 Hashtable methods

Method Syntax and Description

clear() void clear()

Removes all the keys from the hashtable.

aggregate() void aggregate(in Hashtable table)

Adds the contents of the specified hashtable into this hashtable.

get_value() any get_value(in wstring key)

Returns the value associated with the specified key.

get_values() anySeq get_values(in wstringSeq keys)

Returns the values associated with the specified keys.

set_value() void set_value(in wstring key, in any value)

Adds a key-value pair to the hashtable.

set_values() void set_values(in wstringSeq keys, in anySeq values)

Adds multiple key-value pairs to the hashtable.

remove_value() void remove_value(in wstring key)

Removes the key and its value from the hashtable.

remove_values() void remove_values(in wstringSeq keys)

Removes the specified keys and their values from the hashtable.
Developing with Web Application Objects 5-29

Hashtable
keys() Iterator keys()

Returns an iterator that you can traverse to get the keys in the hashtable. To ensure
that the iterator remains valid, you should lock the hashtable before creating the itera-
tor and unlock it after destroying the iterator. Ensure that you do not need to modify
the hashtable while it is locked.

lock() void lock()

Locks the hashtable so that it cannot be modified.

unlock() void unlock()

Unlocks the hashtable.

init() void init(in any init_param)

Initializes this object. init_param is optional.

destroy() void destroy()

Destroys this object.

Table 5–17 Hashtable methods

Method Syntax and Description
5-30 Oracle Application Server 4.0 Developer’s Guide: LiveHTML and Perl Applications

ICXRequest
ICXRequest

The ICXRequest object is used to make requests from the LiveHTML cartridge to
other cartridges in Oracle Application Server.

Table 5–18 ICXRequest methods

Method Syntax and Description

set_method() void set_method(in HTTPRequestMethod method)

Sets the method for this request. method can be any of the following as specified in the
HTTP 1.1 specifications: GET, HEAD, POST, PUT, DELETE, TRACE.

set_header() void set_header(in wstring name, in wstring value)

Sets a single header for this request where name is the name of the header and value is
the value of the header.

set_headers() void set_headers(in oracle::OAS::Util::Hashtable headers)

Appends specified headers to the existing set of headers where headers is a hashtable
containing headers to be appended to the existing set of headers. Note that the con-
tents of the hashtable can be of the following types only: wstring, Cookie, or Vector. If
Vector type, then each entry of the Vector must be either a string or Cookie.

set_content() void set_content(in wstring name, in wstring value)

Sets the content for the request. name is the name of the content and value is the value
of the content.

set_contents() void set_contents(in oracle::OAS::Util::Hashtable contents)
Appends the contents in a hashtable to the existing set of contents in
the request. contents is the hashtable containing the new items.

set_auth_info() void set_auth_info(in wstring name, in wstring password)
Sets the username and password for this request.

connect() ICXResponse connect()
Establishes an ICX connection and returns an ICXResponse object
representing a new ICX connection.

enable_transaction() void enable_transaction()
Propagate transactional context with the current ICX request.

disable_transaction() void disable_transaction()
Disable transactional context propagation with the current ICX request.
Developing with Web Application Objects 5-31

ICXRequest
init() void init(in wstring url)

Sets the URL location of the target object where url is the URL address.

destroy() void destroy()

Destroys this object.

Table 5–18 ICXRequest methods

Method Syntax and Description
5-32 Oracle Application Server 4.0 Developer’s Guide: LiveHTML and Perl Applications

ICXResponse
ICXResponse

The ICXResponse object is used to obtain replies from other cartridges responding
to a ICXRequest.

Table 5–19 ICXResponse methods

Method Syntax and Description

get_header() wstring get_header(in wstring header_name)

Obtains the header value associated with the specified header_name .

get_headers() oracle::OAS::Util::Hashtable get_headers()

Obtains the values of all headers associated with this ICXResponse object in a hash-
table.

init() void init(in any init_param)

Initializes this object. init_param is optional.

destroy() void destroy()

Destroys this object.

Table 5–20 ICXResponse attributes

Attribute
Read or
Read/Write Type Description

status_code R long Specifies the HTTP response code.

realm R wstring Specifies the name of the authentication realm speci-
fied in the response.

reason_phrase R wstring Specifies the reason text string that corresponds to
the HTTP response code.

http_version R wstring The version of the HTTP being used.

using_proxy R boolean Indicates whether a proxy was used in the request.

content R oracle::OAS::IO::
InputStream

Read the content as input stream (text-based).
Developing with Web Application Objects 5-33

ObjectFactory
ObjectFactory

This object creates a new object or retrieves an existing object.

Table 5–21 ObjectFactory methods

Method Syntax and Description

get_object() Object get_object(in wstring obj_name)

Retrieves an existing object or creates a new one according to the factory-specific name
specified in obj_name .

For example, for WAOObjectFactory, one of the default factories provided by Oracle
Application Server, the following values are valid for obj_name : Vector, Hashtable,
Cookie, and ICXRequest.
5-34 Oracle Application Server 4.0 Developer’s Guide: LiveHTML and Perl Applications

Server
Server

The Server object represents the runtime environment for the Oracle Application
Server. It is used to provide object creation capabilities.

Table 5–22 Server methods

Method Syntax and Description

get_object_factory() ObjectFactory get_object_factory(in wstring obj_factory_type)

Get the object factory for the specified object type. Valid values for obj_factory_type
are:
“wao” - representing the factory for Web Application Objects
“ior” - representing the factory for objects specified by their stringed CORBA object ref-
erence
“cartx” - representing the factory for an Oracle Application Server cartridge object

get_object() Object get_object(in wstring name)

Retrieves or creates an object using the given name. Returns an object reference repre-
senting the requested object or a null value if the object is not found or cannot be cre-
ated. Note that the actual name must be prefixed with one of the following:

“wao://” - representing the WAO Framework Object Set (any web application object)
“ior://” - a stringed CORBA object reference
“cartx://” - the name of an Oracle Application Server cartridge

get_object_by_type() Object get_object_by_type (in wstring type, in wstring name)

Retrieves or creates an object based on the object’s type and name. Returns an object
reference representing the requested object or a null value if the object is not found or
cannot be created. name must be one of the following:

“wao” - WAO Framework Object Set
“ior” - a stringed CORBA object reference
“cartx” - the name of an Oracle Application Server cartridge

init() void init(in any init_param)

Initializes this object. init_param is optional.

destroy() void destroy()

Destroys this object.
Developing with Web Application Objects 5-35

Document
Document

The Document object represents each LiveHTML page it is instantiated in. It allows
you to access attributes of each page.

Table 5–23 Document attributes

Attribute
Read or
Read/Write Type Description

tx_attr R string Returns a value indicating the transactional context of
the current page.

0 = must participate in transaction
1 = starts a new transaction
2 = in transaction
3 = not in transaction

dft_script_language R wstring Returns a string indicating the default script language of
the current page. Valid value is PERL for current release.
5-36 Oracle Application Server 4.0 Developer’s Guide: LiveHTML and Perl Applications

Transactions in
6

Transactions in LiveHTML

You can develop applications with transactional features using Web Application
Objects. These features are implemented on a per-page basis for each LiveHTML
page that has the transaction property enabled. A transaction can span more than
one cartridge provided each cartridge involved has transaction support enabled.
See the Oracle Application Server Administration Guide.

Contents
■ Specifying the Transactional Property of a LiveHTML Page

■ Transaction Objects for Web Application Objects

■ Example

Specifying the Transactional Property of a LiveHTML Page
A LiveHTML page can be declared to be transactional using a directive tag in the
page. Using this same tag, the page can also be specified not to support transac-
tions if is called in a transactional execution thread. This tag has the following syn-
tax:

<%@ Transaction= attribute %>

where attribute can be one of the four in Table 6–1, “Transaction attributes and their
functions”. Note that this tag can be located anywhere in a LiveHTML page and it
is needed to use the transaction objects for Web Application Objects described later
in this chapter.
LiveHTML 6-1

Specifying the Transactional Property of a LiveHTML Page
As an example, if LiveHTML is currently processing a transaction and a page is
called with the tag <%@ Transaction = not_supported %> present, LiveHTML
will detect the tag, suspend the current transaction, and execute the scripts in the
page. When the scripts have been executed, LiveHTML will resume the transaction.

When a “supported” or “requires_new” attribute is specified, LiveHTML will per-
form the following actions:

1. Check whether the request is associated with an existing transaction.

2. Begins a new transaction if needed (e.g. <%@ Transaction = requires_new %>).

3. Commits the transaction upon completion of the page's execution.

Table 6–1 Transaction attributes and their functions

Attribute Action

Current Transac-
tional State of
Client

LiveHTML Runtime
Action

required Specifies that a
transaction context
is required.

Not transactional Begin Transaction #2
Execute Scripts
End Transaction #2

In transaction #1 Inherit transaction #1

requires_new Specifies that a new
transaction is
required. Note that
this does not create
a nested transaction.

Not transactional Begin Transaction #2
Execute Scripts
End Transaction #2

In transaction #1 Suspend transaction #1

Begin transaction #2
Execute scripts
End transaction #2

Resume transaction #1

supported Specifies that trans-
actions are sup-
ported.

Not transactional Not transactional

In transaction #1 Inherit transaction #1

not_supported Specifies that trans-
actions are not sup-
ported.

Not transactional Not transactional

In transaction #1 Suspend transaction #1
Execute scripts
Resume transaction #1
6-2 Oracle Application Server 4.0 Developer’s Guide: LiveHTML and Perl Applications

Transaction Objects for Web Application Objects
Transaction Objects for Web Application Objects
Several objects have been created to enable Web Application Objects (WAO) to par-
ticipate in transactions. These objects implement methods and attributes and also
return constants to help your application participate in transactions. (Note that
each LiveHTML page using any of these objects must have the <%@ Transaction

= attribute %> tag specified as described earlier in this chapter.)

Table 6–2 Transaction objects for WAO

Object Methods Attributes Constants

TxContext commit()
rollback()

TX_OUTSIDE
TX_ROLLBACK
TX_MIXED
TX_HAZARD
TX_PROTOCOL_ERROR
TX_ERROR
TX_FAIL
TX_EINVAL
TX_COMMITTED
TX_NO_BEGIN
TX_ROLLBACK_NO_BEGIN
TX_MIXED_NO_BEGIN
TX_HAZARD_NO_BEGIN
TX_COMMITTED_NO_BEGIN

TxScriptDoc tx_attr
dft_script_language

Note: The ICXRequest and ICXResponse objects support transac-
tions. They are detailed in Chapter 5, “Developing with Web Appli-
cation Objects”.
Transactions in LiveHTML 6-3

TxContext
TxContext

This object allows you to commit or rollback a transaction and obtain transactional
status information.

Table 6–3 TxContext methods

Method Description

commit() Commit current transaction.

rollback() Rollback current transaction.

Table 6–4 TxContext constants (follows the XA specification by The Open Group)

Attribute Description

TX_OUTSIDE value = -1
The transaction is a local transaction.

TX_ROLLBACK value = -2
The transaction was rolled back.

TX_MIXED value = -3
The transaction was partially committed and partially rolled back.

TX_HAZARD value = -4
The transaction may have been partially committed and partially rolled
back.

TX_PROTOCOL_ERROR value = -5
A routine was invoked in an improper context.

TX_ERROR value = -6
A transient error occurred.

TX_FAIL value = -7
A fatal error occurred. The request will be allowed to go through but the
instance will be destroyed.

TX_EINVAL value = -8
Invalid arguments were given.

TX_COMMITTED value = -9
The transaction was heuristically committed.
6-4 Oracle Application Server 4.0 Developer’s Guide: LiveHTML and Perl Applications

TxContext
TX_NO_BEGIN value = -100
A transaction was committed and a new transaction could not be started.

TX_ROLLBACK_NO_BEGIN value = TX_ROLLBACK + TX_NO_BEGIN
A transaction was rolled back and a new transaction could not be started.

TX_MIXED_NO_BEGIN value = TX_MIXED + TX_NO_BEGIN
A transaction was partially committed and partially rolled back, and a new
transaction could not be started.

TX_HAZARD_NO_BEGIN value = TX_HAZARD + TX_NO_BEGIN
A transaction may have been partially committed and partially rolled back,
and a new transaction could not be started.

TX_COMMITTED_NO_BEGIN value = TX_COMMITTED + TX_NO_BEGIN
A transaction was heuristically committed and a new transaction could not
be started.

Table 6–4 TxContext constants (follows the XA specification by The Open Group)

Attribute Description
Transactions in LiveHTML 6-5

TxScriptDoc
TxScriptDoc

The TxScriptDoc object specifies the transactional attributes of a page.

Table 6–5 TxScriptDoc attributes

Attribute
Read or
Read/Write Type Description

tx_attr R TxAttr Returns the transaction property of a page. This
attribute can have any of the following values:

0 - the page must participate in a transaction

1- the page starts a new transaction

2 - can be executed within a transaction

3 - does not work within a transaction

dft_script_language R/W lstring Specifies the default scripting language used.
6-6 Oracle Application Server 4.0 Developer’s Guide: LiveHTML and Perl Applications

Example
Example
The following example illustrates an embedded Perl script in a “.hsp” file request-
ing the result from a PL/SQL stored procedure using Web Application Objects in a
transaction context.

...
<%@ Transaction = required %>
...
<%
Load the package for ICXRequest and create an object reference to ICXRequest
use oracle::OAS::WAO::OASFrmkObject;
my $icx_object = oracle::OAS::WAO::OASFrmkObject->narrow($Server->

get_object("wao://ICXRequest"));

initialize the object with the URL address of the target
$icx_object->init = ("http://machine/plsqlapp/cartx/procedure_name");

set the Http request method to GET
$icx_object->set_method(GET);

create a new ICX connection
$resp_object = $icx_object->connect();

grab the result of the procedure
$foo = $resp_object->content();
...
%>
Transactions in LiveHTML 6-7

Example
6-8 Oracle Application Server 4.0 Developer’s Guide: LiveHTML and Perl Applications

Accessing CORBA Objects fro
7

Accessing CORBA Objects from Perl

Scripts

IDL (Interface Definition Language) is an industry-standard language used to spec-
ify programming interfaces for CORBA objects. CORBA (Common Object Request
Broker Architecture) is an industry-standard model for distributed object-oriented
programming. Both standards are defined and maintained by the Object Manage-
ment Group (OMG). To learn about CORBA and IDL, see the OMG web site at
http://www.omg.org.

When developing a CORBA object, an object developer uses IDL to define and pub-
lish the object’s public interface. A client programmer then uses any of several
available IDL compilers to generate interface bindings for the object in a particular
programming language. The client programmer then uses these bindings in that
language to access the object from their programs.

Oracle provides an IDL-to-Perl compiler that lets you generate Perl bindings for
CORBA objects to make the objects accessible to Perl scripts embedded in your
LiveHTML documents. This enhancement allows LiveHTML application develop-
ers to take advantage of services exposed by other CORBA objects. It also expands
the suite of language and platform choices for LiveHTML developers tremendously.

Contents
■ Using the IDL-to-Perl Compiler

■ Identifiers, Naming Scopes, and Perl Packages

■ Using the Generated Perl Bindings
m Perl Scripts 7-1

Using the IDL-to-Perl Compiler
Using the IDL-to-Perl Compiler
The IDL-to-Perl compiler is called perlidlc, and is located in the following direc-
tory on your Oracle Application Server machine:

$ORAWEB_HOME/bin

You run the IDL-to-Perl compiler as follows:

1. cd $ORAWEB_HOME/bin

2. ./perlidlc idl-file-path

where idl-file-path is the full pathname of the IDL file for which you want to
generate Perl bindings.

The IDL-to-Perl compiler places its generated files, by default, in two subdirectories
of $ORAWEB_HOME/../cartx/livehtml/stubs/ :

■ perl/ —This subdirectory contains the generated Perl mapped packages (.pm
files).

■ java/ —This subdirectory contains generated Java mappings required by the
Perl mapped packages.

Overview of IDL-to-Perl Compiler for Release 4.0
Underlying Java stubs, not Perl stubs, perform runtime range checking of argu-
ments.

Validation of types, in Perl, are currently not being done, so make sure the correct
mapped types are given for an IDL operation. Validation of types will be added in
another release.

This release supports only static interface invocation and does not support any
pseudo object APIs required for dynamic interface invocation.

Other Compiler Options
Other useful options to the IDL-to-Perl compiler include:

■ -I include-dir

Note: Refer to the <OBJECT> tag section in Chapter 4, “Writing
Scripts” for an example of using perlidlc to generate Perl bindings
and using these bindings through an object identifier created by
the <OBJECT> tag.
7-2 Oracle Application Server 4.0 Developer’s Guide: LiveHTML and Perl Applications

Identifiers, Naming Scopes, and Perl Packages
Specifies a directory, include-dir , that contains source code files required by
the IDL file being compiled. You may repeat this option multiple times to spec-
ify multiple directories.

■ -D symbol-name

Specifies a pre-processor symbol, symbol-name, to be considered “defined”
during preprocessing (IDL files may contain pre-processor directives in the
style of the standard C preprocessor, cpp). Specifying this option on the com-
mand line is equivalent to using the #define preprocessor directive in your
source code. You may repeat this option multiple times to define multiple sym-
bols.

■ -O output-dir

Use the -O output dir command to put generated stubs in output-dir /
perl and output-dir /java. Ensure that output-dir /perl is in the PER-
LLIB environment variable of the LiveHTML cartridge and output-dir /
java is in the CLASSPATH environment variable of the LiveHTML cartridge,
by configuring the wrb.app file.

Java stubs are seamless, which means the Perl programmer is unaware of the
Java stub layer.

Identifiers, Naming Scopes, and Perl Packages
The IDL-to-Perl compiler maps each IDL definition to a Perl identifier of the same
name, which can be unscoped or scoped within a package.

The following kinds of IDL definitions create their own naming scopes:

■ module

■ interface

■ struct

Note: If -O output-dir is not specified, perlidlc generates
stubs, by default, under the $ORAWEB_HOME/ows/cartx/live-
html/stubs/ {perl|java} directories. These directories are
already included in the PERLLIB and CLASSPATH environments
of any LiveHTML cartridge, allowing your LiveHTML pages to
seamlessly access stubs generated under default directories. (For
NT systems, note that environment variables are limited to 512
bytes each. CLASSPATH may exceed that size.)
Accessing CORBA Objects from Perl Scripts 7-3

Identifiers, Naming Scopes, and Perl Packages
■ union

■ enum

■ exception

For example, the compiler would map an unscoped IDL module named idlmod to
a Perl package named idlmod in the newly created file idlmod.pm in the perl/
subdirectory of the output directory. Supposing this module defines a constant
default_width , a Perl client could then access the constant in this way:

use idlmod;
...
$width = $idlmod::default_width;

The use directive in this example is explained in Accessing Generated Perl Mod-
ules below.

Nested Scopes
A scope-creating IDL identifier that is declared within another IDL scope is
mapped in the same way as an unscoped identifier, except that the generated Perl
module file is stored in a subdirectory named after its parent scope, and the gener-
ated Perl package is scoped within its parent package.

For example, for an IDL module outer that declares a submodule inner , the IDL-
to-Perl compiler would generate at least these two Perl module files in the perl/
subdirectory of the output directory:

■ outer.pm

■ outer/inner.pm

Supposing the module inner declares a constant right , a Perl client could then
access the constant this way:

use outer;
...
$align = $outer::inner::right;

Note: Perl bindings for unions are not currently implemented.
7-4 Oracle Application Server 4.0 Developer’s Guide: LiveHTML and Perl Applications

Using the Generated Perl Bindings
Accessing Generated Perl Modules
To access a mapped package, you must give the package name as the argument of a
use or require directive. For example:

use idlmod;

You must specify such a use or require directive for each mapped package you
want to access.

When you explicitly include a mapped package for an IDL identifier <ident> in
your script, mapped packages for all IDL identifiers scoped within <ident> are
automatically included. For example, the use outer; command in the above exam-
ple includes outer and outer::inner , which means accessing $outer::inner::right;

is allowable.

Data Types
Perl does not differentiate between various scalar types. The IDL-to-Perl compiler
maps most basic IDL data types to the Perl scalar type. To compensate for the
resulting lack of compile-time type checking in your Perl script, the generated Perl
code for calls to CORBA object operations perform runtime range validation on val-
ues passed for parameters mapped to scalar type.

For parameters mapped to other Perl types, such as array reference and hash refer-
ence, the generated Perl code checks whether the passed values are of the appropri-
ate Perl mapped type.

For constructed types, such as IDL structures and unions (described in detail below
in Using the Generated Perl Bindings), the generated Perl code recursively per-
forms type checking and range validation on the fields of the constructed types.

Using the Generated Perl Bindings
This section illustrates how Perl clients of CORBA objects can use the bindings gen-
erated by the IDL-to-Perl compiler. Each sub-section below presents an example of
a particular kind of IDL definition along with a corresponding example of Perl
code illustrating client usage.

Modules
An IDL module is a scope-creating definition. The IDL-to-Perl compiler maps an
IDL module to a Perl package that provides the scope for the identifiers declared in
the module. Each module name must be unique within the local ORB system.
Accessing CORBA Objects from Perl Scripts 7-5

Using the Generated Perl Bindings
Example
// IDL
module finance {

const long L = 3;

...
};

Perl Client Usage

Perl client
use finance;
...
$longval = $finance::L;

Example: Nested Modules
The IDL-to-Perl compiler maps an IDL module declared within another IDL mod-
ule to a package contained within the package representing the parent module:

// IDL
module outer {

module inner {
const short thing = 3;
...

};
...

};

Perl Client Usage

Perl client
use outer;
...
$intval = $outer::inner::thing;
outer::inner package is automatically included while including outer

Object References
The interface to a CORBA object is defined in IDL as an interface definition. To
invoke operations on a CORBA object from your Perl client program, you must
obtain a reference to the object. To allow this, the IDL-to-Perl compiler makes avail-
able a bind() class (package) method in every package that represents the inter-
face to a CORBA object. bind() creates and returns a reference to a proxy object of
the corresponding CORBA server object.
7-6 Oracle Application Server 4.0 Developer’s Guide: LiveHTML and Perl Applications

Using the Generated Perl Bindings
Invoke this, and all other class methods without reference to an object, by qualify-
ing the method name with the package name.

Example
// IDL
module finance {

interface account {
...

}

interface bank {
account newaccount(in string name);
account getaccount(in string name);
...

}
...

}

Perl Client Usage

To get a reference to an object of type finance::bank , the Perl client code must
use the bind() method that interface bank inherits from CORBA::Object :

Perl client
use finance;
...

$ban

You can then use the object reference $bank to invoke methods on the account
object:

Perl client
...
$account = $bank->getaccount("Joseph P. Shmuck");

Note: You must use the arrow operator (->) to call these methods
rather than the package delimiter (::) operator. The Perl5 inter-
preter requires the use of the arrow operator to process arguments
for these methods correctly.

Note: The client program’s first call to the bind() method of any
package automatically initializes the ORB for use by subsequent
object and ORB calls from the client.
Accessing CORBA Objects from Perl Scripts 7-7

Using the Generated Perl Bindings
Narrowing
Suppose you have a reference to an object implementing interface A, and you know
this reference actually refers to an object implementing interface B. You can “nar-
row” the reference by obtaining a reference to an object implementing interface B.
To do this, use the narrow() class method of class B that maps interface B, such as:

$Bref = B->narrow($Aref);

If you are mistaken, and $Aref does not really refer to an object that implements
interface B, this method raises an exception (see Exceptions below).

Interfaces
The IDL-to-Perl compiler maps an IDL interface to a Perl package.

Example
// IDL
module finance {

interface bank {
const short stuff = 3;
...

};
...

};

The IDL interface bank is mapped to the finance::bank package.

Perl Client Usage

Perl client
use finance; #also uses finance::bank
...
$var = $finance::bank::stuff;

Example: Inheritance
Mapping of the IDL inheritance is achieved through Perl’s inheritance mechanism
on the mapped packages of the IDL interfaces.

// IDL
module finance {

interface account {
double getbalance();
...;

};
7-8 Oracle Application Server 4.0 Developer’s Guide: LiveHTML and Perl Applications

Using the Generated Perl Bindings
interface checkingaccount : account {
...

};
interface bank {

checkingaccount newchecking(in string name);
checkingaccount getchecking(in string name);
...

}
};

Perl Client Usage

Perl client
use finance;
...
$bank = finance::bank->bind();
$checking = $bank->getchecking("Joseph P. Shmuck");
$balance = $checking->getbalance();

Perl mapped package finance::checkingaccount inherits from
finance::account , so invoking the getbalance method on $checking is
valid because $checking , an instance of finance::checkingaccount , inherits
getbalance from finance::account .

Constants
The IDL-to-Perl compiler maps an IDL constant to a Perl scalar in the package cor-
responding to the IDL scope in which the constant is declared.

Example
// IDL
module finance {

interface account {
const double minbalance = 500.0;
...

};
...

};

Perl Client Usage

Perl client
use finance;
...
$minbal = $finance::account::minbalance;
Accessing CORBA Objects from Perl Scripts 7-9

Using the Generated Perl Bindings
Basic Data Types
The IDL-to-Perl compiler maps the following IDL types to the Perl scalar type:

■ short

■ long

■ long long

■ unsigned short

■ unsigned long

■ unsigned long long

■ float

■ double

■ char

■ wchar

■ octet

■ boolean

See Data Types above for a discussion of how the generated Perl code performs
runtime type and range checking.

Values for variables, parameters, and operation return values of IDL type boolean
map to Perl scalar values, which can be evaluated in a boolean context.

The IDL Any Type
The IDL-to-Perl compiler maps a variable or parameter of type any to a reference
to a CORBA pseudo-object of type CORBA::Any. See Chapter 8, “CORBA Pseudo-
Object API for Perl Clients” to learn about this pseudo-object interface.

Example
// IDL
module finance {

interface account {
Any collateral(in any asset);
...

};
interface bank {

account newaccount(in string name);
7-10 Oracle Application Server 4.0 Developer’s Guide: LiveHTML and Perl Applications

Using the Generated Perl Bindings
account getaccount(in string name);
...

};
};

Perl Client Usage

Perl Client
use finance;
...
$bank = finance::bank->bind();
$acct = $bank->getaccount("Joseph P. Shmuck");

create a CORBA::Any pseudo-object and get a reference to it
$asset = CORBA::TypeCode->create_any();

for some value, construct a TypeCode and store it in $tc--
suppose for this example it's a short integer type
$value = 12;
$tc = CORBA::TypeCode->get_primitive_tc($CORBA::TCKind::tk_short);

initialize the CORBA::Any pseudo-object with this value and typecode
$asset->insert($value, $tc);

pass the CORBA::Any reference as a parameter
$col = $acct->collateral($asset);

do something with the returned CORBA::Any reference
$ctc = $col->type();
if ($ctc->kind() == $CORBA::TCKind::tc_string) {

get string value from the CORBA::Any pseudo-object referred to by $col
$val = $col->extract();
...

}
...

Strings
The IDL-to-Perl compiler maps both bounded and unbounded IDL strings to Perl
scalar. Because Perl scalar strings are always unbounded, the generated Perl code
for method invocations truncates string values passed for bounded string method
parameters if the values exceed the allowed length.
Accessing CORBA Objects from Perl Scripts 7-11

Using the Generated Perl Bindings
Example
// IDL
module finance {

interface account {
double totaldeposits(in string frombankid, in string<8> date);
...

};
interface bank {

account newaccount(in string name);
account getaccount(in string name);
...

};
...

};

Perl Client Usage

Perl client
use finance;
...
$bank = finance::bank->bind();
$acct = $bank->getaccount("Joseph P. Shmuck");

the date string passed below will be truncated to 8 characters,
lopping off " extra chars"
$totaldeposits = $acct->totaldeposits("90-7005", "19980106 extra chars");
...

Arrays and Sequences
The IDL-to-Perl compiler maps IDL arrays and IDL sequences to Perl array refer-
ences.

Example
// IDL
module finance {

interface account {
...

};
interface bank {

long getaccounts(out sequence<account> accounts);
account newjointaccount(in sequence<string, 2> names);
...

};
7-12 Oracle Application Server 4.0 Developer’s Guide: LiveHTML and Perl Applications

Using the Generated Perl Bindings
...
};

Perl Client Usage

Perl client
use finance;
...
$bank = finance::bank->bind();

pass reference to the array which getaccounts is to populate
$numaccts = $bank->getaccounts($accts);
for ($i = 0; $i < $numaccts; $i++) {

$account = $accts->[$i];
...

}

construct and pass an array reference to newjointaccount
$names = ["Joseph P. Shmuck", "Josephine Q. Public"];
$jointacct = $bank->newjointaccount($names);
...

Operations
The IDL-to-Perl compiler maps an IDL operation declared within an interface to a
Perl method in the package that represents the interface. See Interfaces above for an
example.

Attributes
The IDL-to-Perl compiler maps an IDL attribute declared within an interface to an
overloaded Perl method named after the attribute in the package that represents
the interface. You can call the method in two ways:

■ When called with no arguments, the method returns the current value of the
attribute.

■ When called with one argument, the method sets the value of the attribute to
the value of the argument.

Example
// IDL
module finance{

interface account {
attribute double interestrate;
Accessing CORBA Objects from Perl Scripts 7-13

Using the Generated Perl Bindings
...
};
interface bank {

account newaccount(in string name);
account getaccount(in string name);
...

}
...

};

Perl Client Usage

Perl client
use finance;
...
$bank = finance::bank->bind();
$acct = $bank->getaccount("Joseph P. Shmuck");
$oldrate = $acct->interestrate();
$acct->interestrate($oldrate + 0.005);

Enumerated Types
For an enumerated type, the IDL-to-Perl compiler generates a package that declares
scalar variables named after the enumerators of the type. These scalar variables are
assigned increasing integer values in order starting with zero. The package name is
the same as the IDL name for the enumerated type, hence, the enumerated type
maps to a Perl package. A variable of the enumerated type maps to a Perl scalar.

Example
// IDL
module finance {

interface account {
enum trans_type { deposit, withdrawl };
attribute trans_type lasttranstype;
...

};
interface bank {

account newaccount(in string name);
account getaccount(in string name);
...

}
...

};
7-14 Oracle Application Server 4.0 Developer’s Guide: LiveHTML and Perl Applications

Using the Generated Perl Bindings
Perl Client Usage

Perl client
use finance;
...
$bank = finance::bank->bind();
$acct = $bank->getacount("Joseph P. Shmuck");
$lasttranstype = $acct->lasttranstype();

test value against an enumerator
if ($lasttranstype == $finance::account::trans_type::deposit) {

...
}

Structures
For an IDL structure, the IDL-to-Perl compiler automatically generates a Perl pack-
age named after the structure. A variable of this structure type is mapped to a refer-
ence to a hash. The hash contains keys named after the structure elements.

Example
// IDL
module finance {

interface account
enum trans_type { deposit, withdrawl };
struct transaction {

string<8> date;
trans_type type;
double amount;

};
short do_transaction(inout transaction trans);
...

};
interface bank {

account newaccount(in string name);
account getaccount(in string name);
...

}
...

};

Perl Client Usage

Perl client
use finance;
Accessing CORBA Objects from Perl Scripts 7-15

Using the Generated Perl Bindings
...
$bank = finance::bank->bind();
$acct = $bank->getaccount("Jospeh P. Shmuck");

construct a hash reperesenting a variable of IDL type transaction
$trans = {};
$trans->{date} = "19980106";
$trans->{type} = $finance::account::trans_type::withdrawl;
$trans->{amount} = 40.0;

pass a reference to this hash as a parameter to an operation
$status = $acct->do_transaction($trans);
...

Unions

Typedefs
An IDL typedef defines a new type that is an alias for another IDL type, which is a
typedef or a base IDL type. An IDL typedef maps to a Perl package that represents
this new type. This kind of mapping is used mostly by the runtime system for mar-
shalling/unmarshalling arguments. A typedef variable maps according to the rules
for the unwound base type for which it has an alias.

Example
// IDL
module finance {

interface account {
typedef enum trans_type { deposit, withdrawl } trans_t;
attribute trans_t lasttranstype;
...

};
interface bank {

account newaccount(in string name);
account getaccount(in string name);
...

}
...

};

Note: Perl bindings for unions are not currently implemented.
7-16 Oracle Application Server 4.0 Developer’s Guide: LiveHTML and Perl Applications

Using the Generated Perl Bindings
Perl Client Usage

Perl Client
use finance;
...
$bank = finance::bank->bind();
$lastttranstype = $acct->lasttranstype();

test value against an enumerator--
must specify the base type here rather than the defined type
if ($lasttranstype == $finance::account::trans_type::deposit) {

...
}
...

Exceptions

IDL exceptions are mapped very similarly to IDL structures. For an IDL exception,
the IDL-to-Perl compiler generates a Perl package named after the exception. A
variable of this exception type is mapped to a reference to a hash. The hash con-
tains keys named after the exception elements.

An IDL operation raises an exception by returning a reference to the exception in
place of its usual return value. The correct practice when calling such an operation
from Perl is to use a class method of the class Oracle::hlpr::Excp to test
whether the returned value is an exception. If it is, you can use another class
method of the Oracle::hlpr::Excp class to rethrow the exception.

Currently, there is not a way to see if an exception is of a particular type, or to print
the exception.

This release does not offer enhanced exception handling support. An exception
package will be provided in a future release.

Unmarshalling of user defined exceptions thrown by CORBA server objects is
absent in this release. The user cannot access the fields of the user defined excep-
tion. Support for this will be added in a future release.

CORBA system exceptions need to be mapped to Perl and will be done in a future
release.

Note: The implementation described here will be replaced in a
future release by a true exception mechanism.
Accessing CORBA Objects from Perl Scripts 7-17

Using the Generated Perl Bindings
Oracle::hlpr::Excp provides the following class methods:

■ isexcp() —Called with a single argument, this method returns a true scalar
value if the argument is a reference to an exception object.

■ throw() —Called with a single argument, this method throws the exception
referred to by the argument; the argument must be a reference to a exception
object.

■ rethrow() —Called with no arguments, this method rethrows the last excep-
tion.

Example
// IDL
module finance {

interface account {
typedef enum trans_type { deposit, withdrawl } trans_t;
attribute trans_t lasttranstype;
...

};
interface bank {

exception badaccount {};
account newaccount(in string name);
account getaccount(in string name) raises(badaccount);
...

}
...

};

Perl Client Usage

Perl Client
use finance;
use Oracle::hlpr::Excp;
...
$bank = finance::bank->bind();

$acct = $bank->getaccount("Joseph P. Shmuck");
if (Oracle::hlpr::Excp->isexcp($acct)) {

Oracle::hlpr::Excp->rethrow();
}

7-18 Oracle Application Server 4.0 Developer’s Guide: LiveHTML and Perl Applications

CORBA Pseudo-Object API for Per
8

CORBA Pseudo-Object API for Perl Clients

Oracle Application Server provides Perl bindings for the CORBA pseudo-object
interfaces required to support the Static Invocation Interface (SII) from Perl clients.
This chapter provides sample Perl code illustrating calls to the supported pseudo-
object interfaces. This chapter does not discuss the calling semantics for most of
these interfaces, which is defined in The Common Object Request Broker: Architecture
and Specification, available at the Object Management Group web site, http://
www.omg.org. Some of the interfaces, however, are specific to the Perl implementa-
tion of the pseudo-objects; in these cases, the calling semantics are described.

Contents
This chapter documents the Perl bindings for the following CORBA pseudo-object
interfaces:

■ Object

■ ORB

■ Any

■ TypeCode

■ TCKind

Note: Oracle Application Server does not provide complete Perl
bindings for these pseudo-objects; each section below identifies the
subset of each pseudo-object interface for which bindings are pro-
vided, and any special interfaces defined by the Perl bindings
themselves.
l Clients 8-1

Object
Object
Perl bindings are provided for the following subset of the Object interface:

// PIDL
module CORBA {

interface Object {
// instance methods
Object duplicate();
void release();
boolean is_a(in string logical_type_id);
boolean non_existent();
boolean is_equivalent(in Object other_object);

};
};

The Perl bindings for these operations use the same names prefixed by underscore
(‘_’) characters. For example, the duplicate() operation is mapped to
_duplicate() in Perl.

Instance Methods
In all the following examples, $obj is a reference to a CORBA object.

duplicate()
// PIDL
Object duplicate();

Sample call from Perl

Perl client
use CORBA::Object;
...
$dup = $obj ->_duplicate();

release()
// PIDL
void release();

Sample call from Perl

Perl client
use CORBA::Object;
...
$obj ->_release();
8-2 Oracle Application Server 4.0 Developer’s Guide: LiveHTML and Perl Applications

Object
is_a()
// PIDL
boolean is_a(in string logical_type_id);

Sample call from Perl

In this example, $logical_id is of Perl scalar type with a string value.

Perl client
use CORBA::Object;
...
if ($obj ->_is_a($logical_id)) {

...
}

non_existent()
// PIDL
boolean non_existent();

Sample call from Perl

Perl client
use CORBA::Object;
...
if ($obj ->_non_existent()) {

...
}

is_equivalent()
// PIDL
boolean is_equivalent(in Object other_object);

Sample call from Perl

In this example, $other_object is a reference to a CORBA object.

Perl client
use CORBA::Object;
...
if ($obj ->_is_equivalent($other_object)) {

...
}

CORBA Pseudo-Object API for Perl Clients 8-3

ORB
ORB
Perl bindings are provided for the following subset of the ORB interface:

// PIDL
module CORBA {

interface ORB {
typedef string ObjectId;
typedef sequence<ObjectId> ObjectIdList;

exception InvalidName{};

// class methods
ObjectIdList list_initial_services();
Object resolve_initial_references(in ObjectID identifier)

raises(InvalidName);

string object_to_string(in Object obj);
Object string_to_object(in string str);

// interfaces defined by the Perl bindings--
// use the init() operations in place of CORBA::ORB_init()
ORB init();
ORB init(inout sequence<string> argv);

// instance methods
Object bind(string object_id);
void term();

};
};

Class Methods

list_initial_services()
// PIDL
ObjectIdList list_initial_services();

Sample call from Perl

Perl client
use CORBA::ORB;
...
$servlist = CORBA::ORB->list_initial_services();
$numservs = scalar(@$servlist);
for ($i = 0; $i < $numservs; $i++) {
8-4 Oracle Application Server 4.0 Developer’s Guide: LiveHTML and Perl Applications

ORB
$service = $serlist->[$i];
...

}

resolve_initial_references()
// PIDL
Object resolve_initial_references(in ObjectID identifier)

raises(InvalidName);

Sample call from Perl

In this example, $obj_id is of scalar type with a string value representing a value
of IDL type ObjectID . This value should be one of the values returned by
list_initial_services() .

Perl client
Fuse Oracle::hlpr::Excp;
...
$obj = CORBA::ORB->resolve_initial_references($obj_id);
if (Oracle::hlpr::Excp->isexcp($obj)) {

Oracle::hlpr::Excp->throw($obj);
}

object_to_string()
// PIDL
string object_to_string(in Object obj);

Sample call from Perl

In this example, $obj is a reference to a CORBA object.

Perl client
use CORBA::ORB;
...
$str = CORBA::ORB->object_to_string($obj);

string_to_object()
// PIDL
Object string_to_object(in string str);

Sample call from Perl

In this example, $string is of scalar type with a string value.
CORBA Pseudo-Object API for Perl Clients 8-5

ORB
Perl client
use CORBA::ORB;
...
$obj = CORBA::ORB->string_to_object($string);

init()

You use this operation to initialize the Object Request Broker (ORB) and invoke ser-
vices on it.

// PIDL
ORB init();
ORB init(inout sequence<string> argv);

When using the second form of init() , the first element of the argv array must
be a valid Java CLASSPATH value, which must specify the location or locations of
the Java bindings for CORBA pseudo-objects; you must make sure the directory
$ORAWEB_HOME/../cartx/livehtml/stubs/java/ is included in the CLASS-
PATH. This is required because the IDL-to-Perl compiler generates Java bindings
that the Perl bindings use to invoke operations on the ORB and CORBA objects.

Sample call from Perl

Perl client
use CORBA::ORB;
...
$orb = CORBA::ORB->init();

Instance Methods

bind()
The method binds to the CORBA object identified by its argument.

// PIDL
Object bind(string object_id);

Sample call from Perl

In this example:

Caution: Do not call this method from within a LiveHTML docu-
ment. When your script runs from within a LiveHTML document,
your script automatically has access to a running ORB.
8-6 Oracle Application Server 4.0 Developer’s Guide: LiveHTML and Perl Applications

Any
■ $orb is a reference to a CORBA ORB pseudo-object.

■ $object_id is of scalar type with a string value.

Perl client
use CORBA::ORB;
...
$obj = $orb ->bind($object_id)

term()

You use this method to terminate the ORB. When this method returns, no further
invocations on CORBA objects are possible.

// PIDL
void term();

Sample call from Perl

In this example, $orb is a reference to a CORBA ORB pseudo-object.

Perl client
use CORBA::ORB;
...
$orb ->term();

Any
Perl bindings are provided for the following subset of the Any interface:

// PIDL
module CORBA {

interface Any {
// instance methods
TypeCode type();
void insert(in any value, in TypeCode type);
any extract(); // actually returns a value of type

// set by insert()
};

};

Caution: Do not call this method from within a LiveHTML docu-
ment. When your script runs from within a LiveHTML document,
you must not terminate the ORB that the LiveHTML cartridge is
using.
CORBA Pseudo-Object API for Perl Clients 8-7

Any
Instance Methods
In these examples, $any is a reference to a CORBA Any pseudo-object.

type()
// PIDL
TypeCode type();

Sample call from Perl

Perl client
use CORBA::Any;
...
$type = $any ->type();

insert()
In this PIDL, anyval represents the type encoded in the type parameter.

// PIDL
void insert(in anyval value, in TypeCode type);

Sample call from Perl

In this example:

■ $value is a value or a reference to a value of the type indicated by $type .

■ $type is a reference to a CORBA TypeCode pseudo-object.

Perl client
use CORBA::Any;
use CORBA::TypeCode;
...

$any ->insert($value , $type);

Caution: This value must not refer to a typecode that was con-
structed using the create_*_tc() methods of CORBA::Type-
Code. You may use the typecode returned by the _type() method
of a CORBA object, or the typecode for a primitive type returned
by the get_primitive_tc() method of CORBA::TypeCode .
8-8 Oracle Application Server 4.0 Developer’s Guide: LiveHTML and Perl Applications

TypeCode
extract()
In this PIDL, anyval represents the type that was specified by the insert() call
that initialized the pseudo-object.

// PIDL
anyval extract(); // actually returns a value of type set by insert()

Sample call from Perl

Perl client
use CORBA::Any;
use CORBA::TypeCode;
use CORBA::TCKind;
...
$type = $any ->type();
$val = $any ->extract();
$kind = $type->kind();
if ($kind == $CORBA::TCKind::tk_short) {

...
}
elsif ($kind == $CORBA::TCKind::tk_long) {

...
}

Generally, in situations similar to this example, the context indicates what $kind is
likely to be; it is not usually necessary to test against every possible TCKind value.

TypeCode
The CORBA specification declares the class methods listed here in interface
ORB. The Perl bindings, however, implement these methods as class methods of
interface TypeCode as shown below:

// PIDL
module CORBA {

struct StructMember {
string name;
TypeCode type;
IDLType type_def; // currently not used

}
typedef sequence<StructMember> StructMemberSeq;

typedef sequence<string> EnumMemberSeq;

interface TypeCode {
CORBA Pseudo-Object API for Perl Clients 8-9

TypeCode
// class methods
Any create_any();
TypeCode create_struct_tc (

in string repository_id,
in string type_name,
in StructMemberSeq members

);
TypeCode create_enum_tc (

in string repository_id,
in string type_name,
EnumMemberSeq members

);
TypeCode create_alias_tc (

in string repository_id,
in string type_name,
in TypeCode original_type

);
TypeCode create_exception_tc (

in string repository_id,
in string type_name,
in StructMemberSeq members

);
TypeCode create_interface_tc (

in string repository_id,
in string type_name

);
TypeCode create_string_tc (

in unsigned long bound
);
TypeCode create_wstring_tc (

in unsigned long bound
);
TypeCode create_sequence_tc (

in unsigned long bound,
in TypeCode type

);
TypeCode create_array_tc (

in unsigned long length,
in TypeCode type

);

// class method defined by the Perl bindings
TypeCode get_primitive_tc(TCKind kind);

// exceptions raised by instance methods
8-10 Oracle Application Server 4.0 Developer’s Guide: LiveHTML and Perl Applications

TypeCode
exception Bounds {};
exception BadKind {};

// instance methods
boolean equal(in TypeCode tc);
TCKind kind();
string id() raises(BadKind);
string name() raises(BadKind);
unsigned long member_count() raises(BadKind);
string member_name(

in unsigned long index
) raises(BadKind, Bounds);
TypeCode member_type(

in unsigned long index
) raises(BadKind, Bounds);
any member_label(

in unsigned long index
) raises(BadKind, Bounds);
TypeCode discriminator_type() raises(BadKind);
long default_index() raises(BadKind);
unsigned long length() raises(BadKind);
TypeCode content_type() raises(BadKind);

// instance method defined by the Perl bindings
TypeCode orig_type();

};
};

Class Methods
The CORBA specification declares these methods in interface ORB . The Perl
bindings, however, implement these methods as class methods of interface
TypeCode .

In the following examples, $repository_id and $type_name are each of sca-
lar type with a string value.

create_any()
// PIDL
Any create_any();

Sample Call from Perl

Perl client
use CORBA::TypeCode;
CORBA Pseudo-Object API for Perl Clients 8-11

TypeCode
...
$any = CORBA::TypeCode->create_any();

create_struct_tc()
// PIDL
TypeCode create_struct_tc (

in string repository_id,
in string type_name,
in StructMemberSeq members

);

Sample call from Perl

In this example:

■ $member_name1 and $member_name2 are of scalar type with a string value.

■ $member_type1 and $member_type2 are references to CORBA TypeCode
pseudo-objects.

Perl client
use CORBA::TypeCode;
...
construct references to hashes defining structure members
$member1 =

{ "name" => $member_name1, "type" => $member_type1 , "type_def" => "" };
$member2 =

{ "name" => $member_name2, "type" => $member_type2 , "type_def" => "" };
repeat for additional structure members

construct reference to array of members, which defines the structure
$members = [$member1, $member2];
$newtypecode =

CORBA::TypeCode->create_struct_tc($repository_id , $type_name , $members);

create_enum_tc()
// PIDL
TypeCode create_enum_tc (

in string repository_id,
in string type_name,
EnumMemberSeq members

);
8-12 Oracle Application Server 4.0 Developer’s Guide: LiveHTML and Perl Applications

TypeCode
Sample call from Perl

Perl client
use CORBA::TypeCode;
...
construct a reference to an array containing the new enum value names
$enumvals = ["val1", "val2", "val3"];
$newtypecode =

CORBA::TypeCode->create_enum_tc($repository_id , $type_name , $enumvals);

create_alias_tc()
// PIDL
TypeCode create_alias_tc (

in string repository_id,
in string type_name,
in TypeCode original_type

);

Sample call from Perl

In this example, $original_type is a reference to a CORBA TypeCode pseudo-
object.

Perl client
use CORBA::TypeCode;
...
$newtypecode =

CORBA::TypeCode->create_alias_tc($repository_id , $type_name ,
$original_type);

create_exception_tc()
// PIDL
TypeCode create_exception_tc (

in string repository_id,
in string type_name,
in StructMemberSeq members

);

Sample call from Perl

Perl client
use CORBA::TypeCode;
...
CORBA Pseudo-Object API for Perl Clients 8-13

TypeCode
construct references to hashes defining exception members
$member1 =

{ "name" => $member_name1, "type" => $member_type1 , "type_def" => "" };
$member2 =

{ "name" => $member_name2, "type" => $member_type2 , "type_def" => "" };
repeat for additional exception members

construct reference to array of members, which defines the exception
$members = [$member1, $member2];
$newtypecode =

CORBA::TypeCode->create_struct_tc($repository_id , $type_name , $members);

create_interface_tc()
// PIDL
TypeCode create_interface_tc (

in string repository_id,
in string type_name

);

Sample call from Perl

Perl client
use CORBA::TypeCode;
...
$newtypecode = CORBA::TypeCode->($repository_id , $type_name);

create_string_tc()
// PIDL
TypeCode create_string_tc (

in unsigned long bound
);

Sample call from Perl

In this example, $bound is of scalar type with an unsigned long integer value.

Perl client
use CORBA::TypeCode;
...
$newtypecode = CORBA::TypeCode->create_string_tc($bound);

create_wstring_tc()
// PIDL
TypeCode create_wstring_tc (
8-14 Oracle Application Server 4.0 Developer’s Guide: LiveHTML and Perl Applications

TypeCode
in unsigned long bound (
);

Sample call from Perl

In this example, $bound is of scalar type with an unsigned long integer value.

Perl client
use CORBA::TypeCode;
...
$newtypecode = CORBA::TypeCode->create_wstring_tc($bound);

create_sequence_tc()
// PIDL
TypeCode create_sequence_tc (

in unsigned long bound,
in TypeCode type

);

Sample call from Perl

In this example:

■ $bound is of scalar type with an unsigned long integer value.

■ $type is a reference to a CORBA TypeCode pseudo-object.

Perl client
use CORBA::TypeCode;
...
$newtypecode = CORBA::create_sequence_tc($bound , $type);

create_array_tc()
// PIDL
TypeCode create_array_tc (

in unsigned long length,
in TypeCode type

);

Sample call from Perl

In this example:

■ $length is of scalar type with an unsigned long integer value.

■ $type is a reference to a CORBA TypeCode pseudo-object.
CORBA Pseudo-Object API for Perl Clients 8-15

TypeCode
Perl client
use CORBA::TypeCode;
...
$newtypecode = CORBA::create_array_tc($length , $type);

get_primitive_tc()
// PIDL
TypeCode get_primitive_tc(TCKind kind);

Sample call from Perl

In this example, $kind is of scalar type with a value defined by enum TCKind ; see
TCKind below.

Perl client
use CORBA::TypeCode;
use CORBA::TCKind;
...
$typecode = CORBA::get_primitive_tc($kind);

Instance Methods
In these examples, $typecode is a reference to a CORBA TypeCode pseudo-object.

equal()
// PIDL
boolean equal(in TypeCode tc);

Sample call from Perl

In this example, $other_typecode is a reference to a CORBA TypeCode pseudo-
object.

Perl client
use CORBA::TypeCode;
...
if ($typecode ->equal($other_typecode)) {

...
}

kind()
// PIDL
TCKind kind();
8-16 Oracle Application Server 4.0 Developer’s Guide: LiveHTML and Perl Applications

TypeCode
Sample call from Perl

Perl client
use CORBA::TypeCode;
...
$kind = $typecode ->kind();
if ($kind == $CORBA::TCKind::tk_short) {

...
}

id()
// PIDL
string id() raises(BadKind);

Sample call from Perl

Perl client
use CORBA::TypeCode;
use Oracle::hlpr::Excp;
...
$id = $typecode ->id();
if (Oracle::hlpr::Excp->isexcp($id)) {

Oracle::hlpr::Excp->throw($id);
}

name()
// PIDL
string name() raises(BadKind);

Sample call from Perl

Perl client
use CORBA::TypeCode;
use Oracle::hlpr::Excp;
...
$name = $typecode ->name();
if (Oracle::hlpr::Excp->isexcp($name)) {

Oracle::hlpr::Excp->throw($name);
}

member_count()
// PIDL
unsigned long member_count() raises(BadKind);
CORBA Pseudo-Object API for Perl Clients 8-17

TypeCode
Sample call from Perl

Perl client
use CORBA::TypeCode;
use Oracle::hlpr::Excp;
...
$num_members = $typecode ->member_count();
if (Oracle::hlpr::Excp->isexcp($num_members)) {

Oracle::hlpr::Excp->throw($num_members);
}

member_name()
// PIDL
string member_name(

in unsigned long index
) raises(BadKind, Bounds);

Sample call from Perl

In this example, $index is of scalar value with an unsigned long integer value.

Perl client
use CORBA::TypeCode;
use Oracle::hlpr::Excp;
...
$mem_name = $typecode ->member_name($index);
if (Oracle::hlpr::Excp->isexcp($mem_name)) {

Oracle::hlpr::Excp->throw($mem_name);
}

member_type()
// PIDL
TypeCode member_type(

in unsigned long index
) raises(BadKind, Bounds);

Sample call from Perl

In this example, $index is of scalar value with an unsigned long integer value.

Perl client
use CORBA::TypeCode;
use Oracle::hlpr::Excp;
...
$mem_type = $typecode ->member_type($index);
8-18 Oracle Application Server 4.0 Developer’s Guide: LiveHTML and Perl Applications

TypeCode
if (Oracle::hlpr::Excp->isexcp($mem_type)) {
Oracle::hlpr::Excp->throw($mem_type);

}

member_label()
// PIDL
any member_label(

in unsigned long index
) raises(BadKind, Bounds);

Sample call from Perl

In this example, $index is of scalar value with an unsigned long integer value.

Perl client
use CORBA::TypeCode;
use Oracle::hlpr::Excp;
...
$label = $typecode ->member_label($index);
if (Oracle::hlpr::Excp->isexcp($label)) {

Oracle::hlpr::Excp->throw($label);
}

discriminator_type()
// PIDL
TypeCode discriminator_type() raises(BadKind);

Sample call from Perl

Perl client
use CORBA::TypeCode;
use Oracle::hlpr::Excp;
...
$tc = $typecode ->discriminator_type();
if (Oracle::hlpr::Excp->isexcp($tc)) {

Oracle::hlpr::Excp->throw($tc);
}

default_index()
// PIDL
long default_index() raises(BadKind);
CORBA Pseudo-Object API for Perl Clients 8-19

TypeCode
Sample call from Perl

Perl client
use CORBA::TypeCode;
use Oracle::hlpr::Excp;
...
$def_index = $typecode ->default_index();
if (Oracle::hlpr::Excp->isexcp($def_index)) {

Oracle::hlpr::Excp->throw($def_index);
}

length()
// PIDL
unsigned long length() raises(BadKind);

Sample call from Perl

Perl client
use CORBA::TypeCode;
use Oracle::hlpr::Excp;
...
$len = $typecode ->length();
if (Oracle::hlpr::Excp->isexcp($len)) {

Oracle::hlpr::Excp->throw($len);
}

content_type()
// PIDL
TypeCode content_type() raises(BadKind);

Sample call from Perl

Perl client
use CORBA::TypeCode;
use Oracle::hlpr::Excp;
...
$tc = $typecode ->content_type();
if (Oracle::hlpr::Excp->isexcp($tc)) {

Oracle::hlpr::Excp->throw($tc);
}

orig_type()
// PIDL
TypeCode orig_type();
8-20 Oracle Application Server 4.0 Developer’s Guide: LiveHTML and Perl Applications

TCKind
Sample call from Perl

Perl client
use CORBA::TypeCode;
...
$tc = $typecode ->orig_type();

TCKind
Perl bindings are provided for enum TCKind :

// PIDL
module CORBA {

enum TCKind {
tk_null, tk_void,
tk_short, tk_long, tk_ushort, tk_ulong,
tk_float, tk_double, tk_boolean, tk_char,
tk_octet, tk_any, tk_TypeCode, tk_Principal, tk_objref,
tk_struct, tk_union, tk_enum, tk_string,
tk_sequence, tk_array, tk_alias, tk_except,
tk_longlong, tk_ulonglong, tk_longdouble,
tl_wchar, tk_wstring, tk_fixed, tk_byte

};
};

The Perl bindings define the tk_byte value; it is not declared in the CORBA speci-
fication.

For an example of using TCKind, see the kind() method of the TypeCode pseudo-
object, above.
CORBA Pseudo-Object API for Perl Clients 8-21

TCKind
8-22 Oracle Application Server 4.0 Developer’s Guide: LiveHTML and Perl Applications

Sample Output from the IDL-to-Perl C
9

Sample Output from the IDL-to-Perl

Compiler

This chapter details the directory structure and Perl module files generated by the
IDL-to-Perl compiler in compiling the following sample IDL.

Contents
■ Sample IDL

■ Directory Structure of the Generated Files

■ Listings of the Generated Files

Sample IDL
This IDL summarizes the examples used in Chapter 7, “Accessing CORBA Objects
from Perl Scripts”:

// IDL

module finance {
const long L = 3;

interface account {
const double minbalance = 500.0;
typedef enum trans_type { deposit, withdrawl } trans_t;

struct transaction {
string<8> date;
trans_t type;
double amount;

};
ompiler 9-1

Directory Structure of the Generated Files
attribute double interestrate;
attribute trans_t lasttranstype;

double getbalance();
double totaldeposits(in string frombankid, in string<8> date);
short do_transaction(inout transaction trans);

any collateral(in any asset);
};

interface checkingaccount : account {

};

interface bank {
const short stuff = 3;
typedef sequence<string, 2> stringseq;
typedef sequence<account> accountseq;

account newaccount(in string name);
account newjointaccount(in stringseq names);
checkingaccount newchecking(in string name);

exception badaccount {};

account getaccount(in string name) raises(badaccount);
long getaccounts(out accountseq accounts) raises(badaccount);
checkingaccount getchecking(in string name) raises(badaccount);

};
};

module outer {
module inner {

const short thing = 3;
};

};

Directory Structure of the Generated Files
The following command line was used to compile the above IDL, contained in the
file ex.idl :

perlidlc ex.idl
9-2 Oracle Application Server 4.0 Developer’s Guide: LiveHTML and Perl Applications

Listings of the Generated Files
This command created the following files and directories in the directory
$ORAWEB_HOME/../cartx/livehtml/stubs/perl/ . Directories are indicated
by trailing Unix-style slash ‘/ ’ characters:

finance/
account/

trans_t.pm
trans_type.pm
transaction.pm

account.pm
bank/

accountseq.pm
badaccount.pm
stringseq.pm

bank.pm
checkingaccount.pm

finance.pm
outer/

inner.pm
outer.pm

Listings of the Generated Files
The following files are listed in the order they appear in the previous section.

finance/account/trans_t.pm
package finance::account::trans_t;

use Oracle::Java::VM qw(:TYPES);
use Oracle::Java::ClassLdr;
use Oracle::Java::Object;
use Oracle::hlpr::Excp;
use CORBA::TypeCode;
use Oracle::hlpr::Primitives;

sub _type {
if(!defined($finance::account::trans_t::alias_tc)) {

my $jClass = Oracle::Java::ClassLdr->loadClass (
"finance/accountPackage/trans_tHelper");

my $id = $jClass->id("$String");
my $name = "finance::account::trans_t";

my $origtc = finance::account::trans_type->_type();
Sample Output from the IDL-to-Perl Compiler 9-3

Listings of the Generated Files
$finance::account::trans_t::alias_tc = CORBA::TypeCode->create_alias_tc($id,
$name, $origtc);

$finance::account::trans_t::alias_tc->jClass(
"finance/accountPackage/trans_t");

$finance::account::trans_t::alias_tc->perlClass(
"finance::account::trans_t");

$finance::account::trans_t::alias_tc->JNItype(
"Lfinance/accountPackage/trans_type;");

}

return $finance::account::trans_t::alias_tc;
}

1;

finance/account/trans_type.pm
package finance::account::trans_type;

use Oracle::Java::VM qw(:TYPES);
use Oracle::Java::ClassLdr;
use Oracle::Java::Object;
use Oracle::hlpr::Excp;
use CORBA::TypeCode;
use Oracle::hlpr::Primitives;

*deposit = \0;
*withdrawl = \1;

sub _type {
if(!defined($finance::account::trans_type::enum_tc)) {

my $jClass = Oracle::Java::ClassLdr->loadClass (
"finance/accountPackage/trans_typeHelper");

my $id = $jClass->id("$String");
my $name = "finance::account::trans_type";

my $members = [];
$members->[0] = {};
$members->[0]->{name} = "deposit";
$members->[1] = {};
$members->[1]->{name} = "withdrawl";
$finance::account::trans_type::enum_tc = CORBA::TypeCode->create_enum_tc(

$id, $name, $members);
$finance::account::trans_type::enum_tc->jClass(

"finance/accountPackage/trans_type");
9-4 Oracle Application Server 4.0 Developer’s Guide: LiveHTML and Perl Applications

Listings of the Generated Files
$finance::account::trans_type::enum_tc->perlClass(
"finance::account::trans_type");

$finance::account::trans_type::enum_tc->JNItype(
"Lfinance/accountPackage/trans_type;");

}

return $finance::account::trans_type::enum_tc;
}

1;

finance/account/transaction.pm
package finance::account::transaction;

use Oracle::Java::VM qw(:TYPES);
use Oracle::Java::ClassLdr;
use Oracle::Java::Object;
use Oracle::hlpr::Excp;
use CORBA::TypeCode;
use Oracle::hlpr::Primitives;

use string;
use finance::account::trans_t;

sub _type {
if(!defined($finance::account::transaction::struct_tc)) {

my $jClass = Oracle::Java::ClassLdr->loadClass (
"finance/accountPackage/transactionHelper");

my $id = $jClass->id("$String");
my $name = "finance::account::transaction";

my $members = [];
$members->[0] = {};
$members->[0]->{name} = "date";
$members->[0]->{tc} = string->_type();
$members->[1] = {};
$members->[1]->{name} = "type";
$members->[1]->{tc} = finance::account::trans_t->_type();
$members->[2] = {};
$members->[2]->{name} = "amount";
$members->[2]->{tc} = Oracle::hlpr::prim_double->_type();
$finance::account::transaction::struct_tc =

CORBA::TypeCode->create_struct_tc($id, $name, $members);
Sample Output from the IDL-to-Perl Compiler 9-5

Listings of the Generated Files
$finance::account::transaction::struct_tc->jClass(
"finance/accountPackage/transaction");

$finance::account::transaction::struct_tc->perlClass(
"finance::account::transaction");

$finance::account::transaction::struct_tc->JNItype(
"Lfinance/accountPackage/transaction;");

}

return $finance::account::transaction::struct_tc;
}

1;

finance/account.pm
package finance::account;

use finance::account::trans_type;
use finance::account::trans_t;
use finance::account::transaction;

use Oracle::Java::VM qw(:TYPES);
use Oracle::Java::ClassLdr;
use Oracle::Java::Object;
use CORBA::Object;
use Oracle::hlpr::Marshall;
use Oracle::hlpr::Excp;
use CORBA::TypeCode;
use Oracle::hlpr::Primitives;

@ISA = qw (CORBA::Object);

sub _type {
if(!defined($finance::account::intf_tc)) {

my $jClass = Oracle::Java::ClassLdr->loadClass ("finance/accountHelper");
my $id = $jClass->id("$String");
my $name = "finance::account";

$finance::account::intf_tc = CORBA::TypeCode->create_interface_tc($id,
$name);

$finance::account::intf_tc->jClass("finance/account");
$finance::account::intf_tc->perlClass("finance::account");
$finance::account::intf_tc->JNItype("Lfinance/account;");

}

9-6 Oracle Application Server 4.0 Developer’s Guide: LiveHTML and Perl Applications

Listings of the Generated Files
return $finance::account::intf_tc;
}

*minbalance = \500.000000;
sub interestrate {
my $self = shift; my $jClass;
if (scalar(@_)) {
use Oracle::hlpr::Primitives;
my $interestrateJava = Oracle::hlpr::Marshall->marshal($_[0],

Oracle::hlpr::prim_double->_type());
my $ret = $self->{javaObj}->interestrate("$double", $interestrateJava, "$void");
return Oracle::hlpr::Excp->throw($ret)

if (Oracle::hlpr::Excp->isexcp($ret));
return ;
} else {
my $ret = $self->{javaObj}->interestrate("$double");
return Oracle::hlpr::Excp->throw($ret)

if (Oracle::hlpr::Excp->isexcp($ret));
use Oracle::hlpr::Primitives;
$retNew = Oracle::hlpr::Marshall->unmarshal($ret,

Oracle::hlpr::prim_double->_type());
return $retNew;
}
}

sub lasttranstype {
my $self = shift; my $jClass;
if (scalar(@_)) {
use finance::account::trans_t;
my $lasttranstypeJava = Oracle::hlpr::Marshall->marshal($_[0],

finance::account::trans_t->_type());
my $ret = $self->{javaObj}->lasttranstype(

"Lfinance/accountPackage/trans_type;", $lasttranstypeJava, "$void");
return Oracle::hlpr::Excp->throw($ret)

if (Oracle::hlpr::Excp->isexcp($ret));
return ;
} else {
my $ret = $self->{javaObj}->lasttranstype(

"Lfinance/accountPackage/trans_type;");
return Oracle::hlpr::Excp->throw($ret)

if (Oracle::hlpr::Excp->isexcp($ret));
use finance::account::trans_t;
$retNew = Oracle::hlpr::Marshall->unmarshal($ret,

finance::account::trans_t->_type());
Sample Output from the IDL-to-Perl Compiler 9-7

Listings of the Generated Files
return $retNew;
}
}

sub getbalance {
my $self = shift; my $jClass;
my $ret = $self->{javaObj}->getbalance("$double");
return Oracle::hlpr::Excp->throw($ret)

if (Oracle::hlpr::Excp->isexcp($ret));
use Oracle::hlpr::Primitives;
$retNew = Oracle::hlpr::Marshall->unmarshal($ret,

Oracle::hlpr::prim_double->_type());
return $retNew;
}

sub totaldeposits {
my $self = shift; my $jClass;
use Oracle::hlpr::Primitives;
my $frombankidJava = Oracle::hlpr::Marshall->marshal($_[0],

Oracle::hlpr::prim_string->_type());
use string;
my $dateJava = Oracle::hlpr::Marshall->marshal($_[1], string->_type());
my $ret = $self->{javaObj}->totaldeposits("$String", $frombankidJava, "$String",

$dateJava, "$double");
return Oracle::hlpr::Excp->throw($ret)

if (Oracle::hlpr::Excp->isexcp($ret));
use Oracle::hlpr::Primitives;
$retNew = Oracle::hlpr::Marshall->unmarshal($ret,

Oracle::hlpr::prim_double->_type());
return $retNew;
}

sub do_transaction {
my $self = shift; my $jClass;
use finance::account::transaction;
my $transJava = Oracle::hlpr::Marshall->marshal($_[0],

finance::account::transaction->_type());
$jClass = Oracle::Java::ClassLdr->loadClass (

"finance/accountPackage/transactionHolder");
$transHldr = Oracle::Java::Object->new ($jClass);
$transHldr->_set_field ("value",

"Lfinance/accountPackage/transaction;", $transJava);
my $ret = $self->{javaObj}->do_transaction(

"Lfinance/accountPackage/transactionHolder;", $transHldr, "$short");
return Oracle::hlpr::Excp->throw($ret)
9-8 Oracle Application Server 4.0 Developer’s Guide: LiveHTML and Perl Applications

Listings of the Generated Files
if (Oracle::hlpr::Excp->isexcp($ret));
$transOut = $transHldr->_get_field ("value",

"Lfinance/accountPackage/transaction;");
use finance::account::transaction;
$_[0] = Oracle::hlpr::Marshall->unmarshal($transOut,

finance::account::transaction->_type());
use Oracle::hlpr::Primitives;
$retNew = Oracle::hlpr::Marshall->unmarshal($ret,

Oracle::hlpr::prim_short->_type());
return $retNew;
}

sub collateral {
my $self = shift; my $jClass;
use CORBA::Any;
my $assetJava = Oracle::hlpr::Marshall->marshal($_[0], CORBA::Any->_type());
my $ret = $self->{javaObj}->collateral("$CORBA::Any::JNItype", $assetJava,

"$CORBA::Any::JNItype");
return Oracle::hlpr::Excp->throw($ret)

if (Oracle::hlpr::Excp->isexcp($ret));
use CORBA::Any;
$retNew = Oracle::hlpr::Marshall->unmarshal($ret, CORBA::Any->_type());
return $retNew;
}

1;

finance/bank/accountseq.pm
package finance::bank::accountseq;

use Oracle::Java::VM qw(:TYPES);
use Oracle::Java::ClassLdr;
use Oracle::Java::Object;
use Oracle::hlpr::Excp;
use CORBA::TypeCode;
use Oracle::hlpr::Primitives;

sub _type {
if(!defined($finance::bank::accountseq::alias_tc)) {

my $jClass = Oracle::Java::ClassLdr->loadClass (
"finance/bankPackage/accountseqHelper");

my $id = $jClass->id("$String");
my $name = "finance::bank::accountseq";
Sample Output from the IDL-to-Perl Compiler 9-9

Listings of the Generated Files
my $array_tc = CORBA::TypeCode->create_sequence_tc(0,
finance::account->_type());

$array_tc->JNItype("[Lfinance/account;");
my $origtc = $array_tc;
$finance::bank::accountseq::alias_tc = CORBA::TypeCode->create_alias_tc($id,

$name, $origtc);
$finance::bank::accountseq::alias_tc->jClass(

"finance/bankPackage/accountseq");
$finance::bank::accountseq::alias_tc-

>perlClass("finance::bank::accountseq");
$finance::bank::accountseq::alias_tc->JNItype("[Lfinance/account;");

}

return $finance::bank::accountseq::alias_tc;
}

1;

finance/bank/badaccount.pm
package finance::bank::badaccount;

use Oracle::Java::VM qw(:TYPES);
use Oracle::Java::ClassLdr;
use Oracle::Java::Object;
use Oracle::hlpr::Excp;
use CORBA::TypeCode;
use Oracle::hlpr::Primitives;

sub _type {
if(!defined($finance::bank::badaccount::struct_tc)) {

my $jClass = Oracle::Java::ClassLdr->loadClass (
"finance/bankPackage/badaccountHelper");

my $id = $jClass->id("$String");
my $name = "finance::bank::badaccount";

my $members = [];
$finance::bank::badaccount::struct_tc =

CORBA::TypeCode->create_exception_tc($id, $name, $members);
$finance::bank::badaccount::struct_tc->jClass(

"finance/bankPackage/badaccount");
$finance::bank::badaccount::struct_tc->perlClass(

"finance::bank::badaccount");
$finance::bank::badaccount::struct_tc->JNItype(
9-10 Oracle Application Server 4.0 Developer’s Guide: LiveHTML and Perl Applications

Listings of the Generated Files
"Lfinance/bankPackage/badaccount;");
}

return $finance::bank::badaccount::struct_tc;
}

1;

finance/bank/stringseq.pm
package finance::bank::stringseq;

use Oracle::Java::VM qw(:TYPES);
use Oracle::Java::ClassLdr;
use Oracle::Java::Object;
use Oracle::hlpr::Excp;
use CORBA::TypeCode;
use Oracle::hlpr::Primitives;

sub _type {
if(!defined($finance::bank::stringseq::alias_tc)) {

my $jClass = Oracle::Java::ClassLdr->loadClass (
"finance/bankPackage/stringseqHelper");

my $id = $jClass->id("$String");
my $name = "finance::bank::stringseq";

my $array_tc = CORBA::TypeCode->create_sequence_tc(2,
Oracle::hlpr::prim_string->_type());

$array_tc->JNItype("[$String");
my $origtc = $array_tc;
$finance::bank::stringseq::alias_tc = CORBA::TypeCode->create_alias_tc(

$id, $name, $origtc);
$finance::bank::stringseq::alias_tc->jClass(

"finance/bankPackage/stringseq");
$finance::bank::stringseq::alias_tc->perlClass("finance::bank::stringseq");
$finance::bank::stringseq::alias_tc->JNItype("[$String");

}

return $finance::bank::stringseq::alias_tc;
}

1;
Sample Output from the IDL-to-Perl Compiler 9-11

Listings of the Generated Files
finance/bank.pm
package finance::bank;

use finance::bank::stringseq;
use finance::bank::accountseq;
use finance::bank::badaccount;

use Oracle::Java::VM qw(:TYPES);
use Oracle::Java::ClassLdr;
use Oracle::Java::Object;
use CORBA::Object;
use Oracle::hlpr::Marshall;
use Oracle::hlpr::Excp;
use CORBA::TypeCode;
use Oracle::hlpr::Primitives;

@ISA = qw (CORBA::Object);

sub _type {
if(!defined($finance::bank::intf_tc)) {

my $jClass = Oracle::Java::ClassLdr->loadClass ("finance/bankHelper");
my $id = $jClass->id("$String");
my $name = "finance::bank";

$finance::bank::intf_tc = CORBA::TypeCode->create_interface_tc($id, $name);
$finance::bank::intf_tc->jClass("finance/bank");
$finance::bank::intf_tc->perlClass("finance::bank");
$finance::bank::intf_tc->JNItype("Lfinance/bank;");

}

return $finance::bank::intf_tc;
}

*stuff = \3;
sub newaccount {
my $self = shift; my $jClass;
use Oracle::hlpr::Primitives;
my $nameJava = Oracle::hlpr::Marshall->marshal($_[0],

Oracle::hlpr::prim_string->_type());
my $ret = $self->{javaObj}->newaccount("$String", $nameJava,

"Lfinance/account;");
return Oracle::hlpr::Excp->throw($ret)

if (Oracle::hlpr::Excp->isexcp($ret));
use finance::account;
9-12 Oracle Application Server 4.0 Developer’s Guide: LiveHTML and Perl Applications

Listings of the Generated Files
my $retNew = Oracle::hlpr::Marshall->unmarshal($ret,
finance::account->_type());

return $retNew;
}

sub newjointaccount {
my $self = shift; my $jClass;
use finance::bank::stringseq;
my $namesJava = Oracle::hlpr::Marshall->marshal($_[0],

finance::bank::stringseq->_type());
my $ret = $self->{javaObj}->newjointaccount("[$String", $namesJava,

"Lfinance/account;");
return Oracle::hlpr::Excp->throw($ret)

if (Oracle::hlpr::Excp->isexcp($ret));
use finance::account;
my $retNew = Oracle::hlpr::Marshall->unmarshal($ret,

finance::account->_type());
return $retNew;
}

sub newchecking {
my $self = shift; my $jClass;
use Oracle::hlpr::Primitives;
my $nameJava = Oracle::hlpr::Marshall->marshal($_[0],

Oracle::hlpr::prim_string->_type());
my $ret = $self->{javaObj}->newchecking("$String", $nameJava,

"Lfinance/checkingaccount;");
return Oracle::hlpr::Excp->throw($ret)

if (Oracle::hlpr::Excp->isexcp($ret));
use finance::checkingaccount;
my $retNew = Oracle::hlpr::Marshall->unmarshal($ret,

finance::checkingaccount->_type());
return $retNew;
}

sub getaccount {
my $self = shift; my $jClass;
use Oracle::hlpr::Primitives;
my $nameJava = Oracle::hlpr::Marshall->marshal($_[0],

Oracle::hlpr::prim_string->_type());
my $ret = $self->{javaObj}->getaccount("$String", $nameJava,

"Lfinance/account;");
return Oracle::hlpr::Excp->throw($ret)

if (Oracle::hlpr::Excp->isexcp($ret));
use finance::account;
Sample Output from the IDL-to-Perl Compiler 9-13

Listings of the Generated Files
my $retNew = Oracle::hlpr::Marshall->unmarshal($ret,
finance::account->_type());

return $retNew;
}

sub getaccounts {
my $self = shift; my $jClass;
$jClass = Oracle::Java::ClassLdr->loadClass (

"finance/bankPackage/accountseqHolder");
my $accountsHldr = Oracle::Java::Object->new ($jClass);
my $ret = $self->{javaObj}->getaccounts(

"Lfinance/bankPackage/accountseqHolder;", $accountsHldr, "$int");
return Oracle::hlpr::Excp->throw($ret)

if (Oracle::hlpr::Excp->isexcp($ret));
my $accountsOut = $accountsHldr->_get_field ("value", "[Lfinance/account;");
use finance::bank::accountseq;
$_[0] = Oracle::hlpr::Marshall->unmarshal($accountsOut,

finance::bank::accountseq->_type());
use Oracle::hlpr::Primitives;
my $retNew = Oracle::hlpr::Marshall->unmarshal($ret,

Oracle::hlpr::prim_long->_type());
return $retNew;
}

sub getchecking {
my $self = shift; my $jClass;
use Oracle::hlpr::Primitives;
my $nameJava = Oracle::hlpr::Marshall->marshal($_[0],

Oracle::hlpr::prim_string->_type());
my $ret = $self->{javaObj}->getchecking("$String", $nameJava,

"Lfinance/checkingaccount;");
return Oracle::hlpr::Excp->throw($ret)

if (Oracle::hlpr::Excp->isexcp($ret));
use finance::checkingaccount;
my $retNew = Oracle::hlpr::Marshall->unmarshal($ret,

finance::checkingaccount->_type());
return $retNew;
}

1;

finance/checkingaccount.pm
package finance::checkingaccount;
9-14 Oracle Application Server 4.0 Developer’s Guide: LiveHTML and Perl Applications

Listings of the Generated Files
use finance::account::trans_type;
use finance::account::trans_t;
use finance::account::transaction;

use Oracle::Java::VM qw(:TYPES);
use Oracle::Java::ClassLdr;
use Oracle::Java::Object;
use CORBA::Object;
use Oracle::hlpr::Marshall;
use Oracle::hlpr::Excp;
use CORBA::TypeCode;
use Oracle::hlpr::Primitives;

use finance::account;

@ISA = qw (finance::account);

sub _type {
if(!defined($finance::checkingaccount::intf_tc)) {

my $jClass = Oracle::Java::ClassLdr->loadClass (
"finance/checkingaccountHelper");

my $id = $jClass->id("$String");
my $name = "finance::checkingaccount";

$finance::checkingaccount::intf_tc = CORBA::TypeCode->create_interface_tc(
$id, $name);

$finance::checkingaccount::intf_tc->jClass("finance/checkingaccount");
$finance::checkingaccount::intf_tc->perlClass("finance::checkingaccount");
$finance::checkingaccount::intf_tc->JNItype("Lfinance/checkingaccount;");

}

return $finance::checkingaccount::intf_tc;
}

1;

finance.pm
package finance;

use finance::account;
use finance::checkingaccount;
use finance::bank;

*L = \3;
Sample Output from the IDL-to-Perl Compiler 9-15

Listings of the Generated Files
1;

outer/inner.pm
package outer::inner;

*thing = \3;
1;

outer.pm
package outer;

use outer::inner;

1;
9-16 Oracle Application Server 4.0 Developer’s Guide: LiveHTML and Perl Applications

Part II

Perl Cartridge

Oracle Application Server 4.0 Developer’s Guide: LiveHTML and Perl Applications

Perl Cartridge Ov
10

 Perl Cartridge Overview

Perl is an interpreted language that is commonly used to write CGI scripts. Perl has
powerful text processing capabilities, which makes it ideal for parsing requests
from clients and generating dynamic HTML. You can download Perl from many
sites on the Internet; you can find a list of pointers at http://www.perl.com.

The Perl cartridge contains a Perl interpreter that runs under the application server.
Although you can run Perl scripts using Oracle Application Server without using
the Perl cartridge (that is, they are run as CGI scripts), you can get better perfor-
mance if you run the Perl scripts under the Perl cartridge. In addition, because the
Perl cartridge has the Perl interpreter in it, you do not need to have the perl execut-
able on your system.

Perl scripts written for the Perl cartridge are slightly different from Perl scripts writ-
ten for a CGI environment because of how the cartridge runs the interpreter. If you
already have Perl scripts on your system that you run in a CGI environment, you
may need to modify them to make them run correctly under the cartridge.

The Perl cartridge is based on Perl version 5.004_01.

Contents
■ How the Perl Cartridge Improves Performance

■ Files in the Distribution

■ Using $ORAWEB_HOME/../cartx/common/perl as Your Main Perl Installa-
tion

■ Variations from Perl Standard Version

Note: Oracle Application Server does not support Perl interpreter
executables where the SUID bit has been set.
erview 10-1

How the Perl Cartridge Improves Performance
How the Perl Cartridge Improves Performance
Perl scripts run faster under the Perl cartridge than in a CGI environment because:

■ The cartridge maintains a persistent Perl interpreter.

This avoids the overhead of allocating and constructing a new interpreter each
time the server receives a request to run a Perl CGI script. The interpreter is
loaded once in memory and it keeps running after handling each request.

■ The cartridge pre-compiles Perl scripts and caches them.

When the Perl cartridge receives a request, the Perl interpreter is ready to run
the compiled script. It does not have to spend time compiling the script, unless
the script has changed since the last time it was compiled. If so, the cartridge
detects that the script has changed, and this causes it to compile the new ver-
sion of the script and caches it.

Files in the Distribution
In addition to distributing the Perl cartridge, Oracle Application Server also distrib-
utes the Perl binaries, sources, and man pages. The binaries and man pages are
installed when you install Oracle Application Server, but the Perl sources are not
installed. You can access the source files, which are in compressed form, from the
CD.

Table 10–1 Perl files in the distribution

Directory Description

$ORAWEB_HOME/../cartx/common/perl Top-level directory for the Perl cartridge

$ORAWEB_HOME/../cartx/common/
perl/lib

Perl cartridge library file and runtime files

$ORAWEB_HOME/../cartx/common/
perl/bin

Perl binaries

$ORAWEB_HOME/../cartx/common/
perl/man

Perl man pages (UNIX only)

$ORAWEB_HOME/../cartx/common/
perl/lib/Pod/html/pod

Perl help pages in HTML (Windows NT
only). The top-level page is perl.html.

$ORAWEB_HOME/../cartx/common/
perl/src

Perl sources (compressed). Note that this
directory is not installed if you are installing
from a CD.
10-2 Oracle Application Server 4.0 Developer’s Guide: LiveHTML and Perl Applications

Using $ORAWEB_HOME/../cartx/common/perl as Your Main Perl Installation
Using $ORAWEB_HOME/../cartx/common/perl as Your Main Perl
Installation

You can use the Perl distribution that is provided with Oracle Application Server as
your main Perl installation and use it to run Perl scripts outside the context of the
application server. For example, you can use it to run Perl scripts from a shell.

To use the Perl executables:

1. Add $ORAWEB_HOME/../cartx/common/perl/bin to your path.

If you are using the C shell:

% set path = ($ORAWEB_HOME/../cartx/common/perl/bin $path)

If you are using the Bourne or Korn shell:

$ PATH=$ORAWEB_HOME/../cartx/common/perl/bin:$PATH; export PATH

2. Set the PERL5LIB environment variable.

If you are using the C shell:

% setenv PERL5LIB $ORAWEB_HOME/../cartx/common/perl/lib/sun4-solaris/
5.00401:$ORAWEB_HOME/../cartx/common/perl/lib:$ORAWEB_HOME/../cartx/common/
perl/lib/site_perl/sun4-solaris:$ORAWEB_HOME/../cartx/common/perl/lib/
site_perl

If you are using the Bourne or Korn shell:

$ PERL5LIB=$ORAWEB_HOME/../cartx/common/perl/lib/sun4-solaris/
5.00401:$ORAWEB_HOME/../cartx/common/perl/lib:$ORAWEB_HOME/../cartx/common/
perl/lib/site_perl/sun4-solaris:$ORAWEB_HOME/../cartx/common/perl/lib/
site_perl; export PERL5LIB

To use the Perl man pages, add $ORAWEB_HOME/../cartx/common/perl/man to
the MANPATH environment variable. If MANPATH is already set, do the follow-
ing:

If you are using the C shell:

% setenv MANPATH ${MANPATH}:$ORAWEB_HOME/../cartx/common/perl/man

If you are using the Bourne or Korn shell:

$ MANPATH=$MANPATH:$ORAWEB_HOME/../cartx/common/perl/man; export MANPATH
Perl Cartridge Overview 10-3

Variations from Perl Standard Version
Variations from Perl Standard Version
The Perl distribution that comes with the Oracle Application Server Perl cartridge
is the standard Perl version 5.004_01. The interpreter is built as a shared object in
UNIX, libperlctx.so, and a shared library in NT, perlnt40.dll. The Perl and Live-
HTML cartridges link with the shared object or library at runtime.

The use of the Perl interpreter as a shared object or dynamic library instead of stati-
cally linking the interpreter with the Perl or LiveHTML cartridges allows the inter-
preter to be upgraded. This design also allows the Perl or LiveHTML cartridges to
use another compatible Perl installation on the site.

Running scripts through the Perl cartridge differs from running scripts through a
standard Perl interpreter in the following ways (applies to LiveHTML cartridge
also):

■ Standard I/O is redirected to the WRB client I/O, that is, to the client browser.

■ STDERR is redirected to the WRB Logger.

■ Additional CGI environment variables are returned to the Perl interpreter
whenever it calls for system environment variables.

■ fork call is not supported. Instead, the system call should be used. The sys-
tem call modifies the implementation of the Perl interpreter to redirect child
process output to the WRB client I/O.

■ Support for error logging.

■ Support for performance instrumentation.

You can get the standard version of Perl executables from http://www.perl.org.

Note: Currently, the NT environment has a 512 byte limitation on
the expanded length of some environment variables (CLASSPATH,
JAVA_HOME, etc.). Some Oracle Application Server cartridges and
JCO objects will try to expand environment variables. Therefore,
make sure that your environment variables are not longer than 250-
300 characters long.
10-4 Oracle Application Server 4.0 Developer’s Guide: LiveHTML and Perl Applications

11

Tutorial

This chapter provides step-by-step instructions on how to create a Perl application
in Oracle Application Server. The tutorial steps you through the following opera-
tions:

1. Writing the Perl Script

2. Creating a Perl Application and its Components

3. Reloading

4. Creating an HTML Page to Invoke the Perl Script

Note that you must be able to log in as the “admin” user for Oracle Application
Server to add applications to the server.

1. Writing the Perl Script
The sample Perl application runs a Perl script that displays the values of several
CGI environment variables.

Type the following Perl script in a file and save it as showEnv.pl. Place the file in
the $ORAWEB_HOME/test directory. If you do not have permission to create this
directory, you can put the file in another directory, but remember your directory
name when specifying the virtual path mapping.

print "Content-type: text/html\n\n";

print "<html>\n";
print "<head>\n";
print "<title>Some CGI environment variables</title>\n";
print "</head>\n";
print "<body bgcolor=white>\n";
Tutorial 11-1

2. Creating a Perl Application and its Components
print "<h1>Some CGI environment variables</h1>\n";

@varsToDisplay = (
'HTTP_USER_AGENT',
'REQUEST_METHOD',
'PATH_INFO',
'PATH_TRANSLATED');

print "<dl>\n";
foreach (@varsToDisplay) {

print "<dt>$_\n<dd>$ENV{$_}\n";
}

print "</dl>\n";
print "</body></html>\n";

2. Creating a Perl Application and its Components
You need to log in as the “admin” user for the application server in order to per-
form this step.

1. Start up your browser and display the top-level administration page for Oracle
Application Server. You should see “OAS Sites” at the top of the left frame.

2. Click the plus sign (+) to display the sites.

3. Click the plus sign (+) next to a site name to display the components on the
site. You should see “HTTP Listeners”, “Oracle Application Server”, and
“Applications”.

4. Click “Applications” to display the applications in the right frame. Do not click
the plus sign (+) next to Applications because you will see a list of applications
for the site in the left frame, instead of Applications in the right frame.

5. On the applications page in the right frame, click the green plus icon at the top
of the page. The Add Application dialog opens.

6. In the Add Application dialog:

■ Application Type: select Perl.

■ Configure Mode: select Manual, which enables you to enter configuration
data using dialog boxes. The other option, From File, assumes that you
have already entered the configuration data for the application in a file.

■ Click Apply.

This displays the Add Application dialog.
11-2 Oracle Application Server 4.0 Developer’s Guide: LiveHTML and Perl Applications

2. Creating a Perl Application and its Components
7. In the Add Application dialog:

■ Application Name: enter “showCGIvals”. This name is used to identify
your application.

■ Display Name: enter “showCGIvals”. This name is used in the administra-
tion forms.

■ Application Version: enter “1.0”.

■ Click Apply.

When you click Apply, you get a Success dialog box, which contains a but-
ton that enables you to add cartridges to the application.

8. In the Success dialog box, click the Add Cartridges to Application button. This
displays the Add A Cartridge dialog.

9. In the Add A Cartridge dialog:

■ Cartridge Name: enter “cart1”. This name is used to identify your Perl car-
tridge in your “showCGIvals” application.

■ Display Name: enter “cart1”. This name is used in the administration
forms.

■ Click Apply.

Specifying a Virtual Path for Your Perl Cartridge
Before you can invoke an application from a browser, you need to associate its car-
tridges with virtual paths. The “showCGIvals” application that you just added con-
tains one cartridge.

1. Click the + sign next to “showCGIvals” in the tree structure. This displays Con-
figuration and Cartridges.

2. Under Cartridges, click the + sign next to “cart1” to display Configuration. Con-
figuration contains Virtual Path and Cartridge Parameters.

3. Click Virtual Path to display the Virtual Path page in the right frame.

4. On the Virtual Path page, add a virtual path for the “cart1” cartridge. Set the
virtual path as /perl/test and the physical path %ORAWEB_HOME%/test.

5. Click Apply.
Tutorial 11-3

3. Reloading
3. Reloading
After reconfiguring Oracle Application Server, you have to reload the server for the
new configuration to take effect. See “Application Administration” in the Adminis-
tration Guide.

You also have to stop and restart the listener for the new virtual path to take effect.
See “Application Administration” in the Administration Guide.

4. Creating an HTML Page to Invoke the Perl Script
To run the showEnv.pl Perl script, type the following URL in your browser:

http://<host>:<port>/perl/test/showEnv.pl

host and port identify the listener that knows about the cartridge. This is any lis-
tener on the application server except the node manager listener (which runs on
port 8888 by default). For example, you can use the administration utility listener,
which runs on port 8889 by default.

It is more common, however, to invoke the procedure from an HTML page. For
example, the following HTML page has a link that calls the URL.

<HTML>
<HEAD>
<title>CGI Environment Variables</title>
</HEAD>
<BODY>
<H1>CGI Environment Variables</H1>
<p>Show CGI

environment variables
</BODY>
</HTML>

The following figures show the source page (the page containing the link that
invokes the showEnv.pl script), and the page that is generated by the script.
11-4 Oracle Application Server 4.0 Developer’s Guide: LiveHTML and Perl Applications

4. Creating an HTML Page to Invoke the Perl Script
Figure 11–1 The source page and the dynamically generated page in the tutorial

Figure 11–2 The page generated by the Perl script
Tutorial 11-5

4. Creating an HTML Page to Invoke the Perl Script
11-6 Oracle Application Server 4.0 Developer’s Guide: LiveHTML and Perl Applications

Adding and Invoking Perl Appli
12

Adding and Invoking Perl Applications

To configure Perl applications, you use the Oracle Application Server Manager,
which is a collection of administrative forms. On these forms you provide informa-
tion such as virtual paths for the Perl applications, the minimum and maximum
number of instances of Perl applications and their cartridges, and protection for the
virtual paths.

Contents
■ Adding Perl Applications

■ Configuring Perl Applications

■ Number of Requests Processed by a Cartridge Instance

■ Invoking Perl Cartridges

■ Life Cycle of the Perl Cartridge

Adding Perl Applications
To add Perl applications to the application server, you perform these steps:

■ Add the application

■ Add cartridge(s) to the application

To add an application and a cartridge:

1. Start up your browser and display the top-level administration page for Oracle
Application Server.

2. Click the next to a site name to display the components on the site. You
should see “Oracle Application Server”, “HTTP Listeners”, and “Applications”.

+

cations 12-1

Adding Perl Applications
3. Click “Applications” to display the applications in the right frame. Do not click
the next to Applications because you will see a list of applications for the
site in the left frame, instead of Applications in the right frame.

4. On the applications page in the right frame, click . This pops up the Add
Application dialog.

5. In the Add Application dialog box:

■ Application Type: select PERL.

■ Configure Mode: select Manual, which enables you to enter configuration
data using dialog boxes. The other option, From File, assumes that you
have already entered the configuration data for the application in a file.

■ Click Apply.

The Add Application dialog box opens.

6. In the Add Application dialog box:

■ Application Name: enter the name of your application as it should appear
in the configuration file.

■ Display Name: enter the name that is used in the administration forms.

■ Application Version: enter the version of your application.

■ Click Apply.

A Success dialog box opens.

7. In the Success dialog box, click the Add Cartridges to Application button. This
displays the Add A Cartridge dialog box.

8. In the Add A Cartridge dialog box:

■ Cartridge Name: enter the name of your cartridge as it should appear in
the configuration file.

■ Display Name: enter the name that is used in the administration forms.

■ Virtual Path: enter a path for the Perl cartridge such that users can specify
this path in URLs to invoke the Perl cartridge. This path is mapped to the
physical path that you specify below. See the section Virtual Paths Form
below.

■ Physical Path: enter the physical directory path that leads to files for your
Perl cartridge, including files for your Perl application. The virtual path
specified above maps to this physical path.

+

12-2 Oracle Application Server 4.0 Developer’s Guide: LiveHTML and Perl Applications

Adding Perl Applications
9. Click Apply.

10. Stop and restart the listeners and other components of the application server.

See “Stopping and Starting the Application Server” in the “Application Config-
uration” chapter for details.

Adding Cartridges to an Existing Application
A Perl application can have one or more cartridges. You need more than one car-
tridge in a Perl application if you need to configure different values for the car-
tridge parameters. For example, you can specify a different initialization script for
each cartridge.

To add a cartridge to a Perl application:

1. Select “Cartridges” under the Perl application to which you want to add car-
tridges in the navigational tree.

Figure 12–1 Adding Perl cartridges to an existing application

2. Click to display the Add Cartridge dialog.

3. In the Add Cartridge dialog:

■ Configure Mode: select Manually.

■ Click Apply, which displays the Add A Cartridge dialog.

4. In the Add A Cartridge dialog:

Note: To get your application to appear in the navigational tree,
shift-click the browser’s Reload button.
Adding and Invoking Perl Applications 12-3

Configuring Perl Applications
■ Cartridge Name: enter the name that the server uses to identify your Perl
cartridge in your application.

■ Display Name: enter the name that is used in the administration forms.

■ Virtual Path: enter a path for the Perl cartridge such that users can specify
this path in URLs to invoke the Perl cartridge. This path is mapped to the
physical path that you specify below. See the section Virtual Paths Form
below.

■ Physical Path: enter the physical directory path that leads to files for your
Perl cartridge, including files for your Perl application. The virtual path
specified above maps to this physical path.

■ Click Apply.

The following figure summarizes the dialog boxes that you completed. The fields
in the dialog boxes are listed in parentheses.

Figure 12–2 Dialogs to add Perl cartridges

Configuring Perl Applications
The configuration forms are divided into two sections: application configuration
and cartridge configuration. Forms in the application configuration section contain
parameters that apply for the entire application, while forms in the cartridge config-
uration secton contain parameters that apply to a particular cartridge.

Note: For security reasons, you cannot specify a physical path
ending with ".. ". But you can use ".. " in the physical path setting
to indicate an upper directory level. For example, "/routines/
../libraries/ ".

Note: To get your new cartridge to appear in the navigational
tree, shift-click the browser’s Reload button.

Add A Cartridge dialog (cartname, display name, virtual path, physical path)

Add Cartridge (Manually add information)
12-4 Oracle Application Server 4.0 Developer’s Guide: LiveHTML and Perl Applications

Configuring Perl Applications
Application Configuration
Application configuration parameters are described in the “Application Configura-
tion” chapter, because they are the same for all types of applications.

Cartridge Configuration
For Perl cartridges, the cartridge configuration section contains two forms: the Vir-
tual Paths form and the Perl Parameters form.

Virtual Paths Form
The Virtual Paths form enables you to specify a virtual path for a Perl cartridge.
Users can then specify this virtual path in URLs to invoke the cartridge. The virtual
path is available from all listeners listed in the Web Configuration page for the
application.

For example, if you specify a virtual path of /myApp for a Perl cartridge, users can
invoke the cartridge by typing /myApp/file, where file is a Perl script that can be
found in the physical paths associated with the /myApp virtual path.

Perl Parameters Form
The Perl Parameters form (Figure 12–3) enables you to define parameters specific to
the Perl cartridge. The form contains the following parameters:

Table 12–1 Cartridge parameters

Name Value

ARCHLIB The path for architecture-dependent libraries.

Default value: %ORAWEB_HOME%/../cartx/common/perl/lib/
sun4-solaris/5.00401

PRIVLIB The path for private libraries.

Default value: %ORAWEB_HOME%/../cartx/common/perl/lib

SITEARCH The path for site-specific architecture-dependent libraries.

Default value: %ORAWEB_HOME%/../cartx/common/perl/lib/
site_perl/sun4-solaris

SITELIB The path for site-specific libraries.

Default value: %ORAWEB_HOME%/../cartx/common/perl/lib/
site_perl
Adding and Invoking Perl Applications 12-5

Number of Requests Processed by a Cartridge Instance
Figure 12–3 Perl Cartridge Parameters form

Number of Requests Processed by a Cartridge Instance
Some AUTOLOAD subroutines can cause the Perl cartridge’s symbol table to grow
as the cartridge handles each additional request. To limit the growth, set Max
Requests to a small value.

Initialization
Script

The script that is run when an instance of the Perl cartridge starts up.

Default value: %ORAWEB_HOME%/../cartx/common/perl/lib/per-
linit.pl

Max Requests The number of requests that a cartridge server handles before it termi-
nates.

This field can be useful while you are developing Perl applications. If
you call a Perl library, the Perl interpreter caches the Perl library and
uses the cached version for subsequent requests. If you modify the
library, you want the interpreter to load the new version. To do this,
you have to terminate the cartridge server process so that a new car-
tridge server process (with a new Perl interpreter) would handle the
request. A quick way of doing this is to set the Max Requests value to 1.

Default: There is no default, which means that the cartridge server can
handle an unlimited number of requests.

Table 12–1 Cartridge parameters

Name Value
12-6 Oracle Application Server 4.0 Developer’s Guide: LiveHTML and Perl Applications

Life Cycle of the Perl Cartridge
Invoking Perl Cartridges
To invoke a Perl script under the Perl cartridge, the URL must be in the following
format:

http:// host_and_domain_name [: port]/ virtual_path / script_name [? query_string]

where:

■ host_and_domain_name specifies the domain and machine where the application
server is running.

■ port specifies the port at which the application server is listening. If omitted,
port 80 is assumed.

■ virtual_path specifies a virtual path mapped to a Perl cartridge.

■ script_name specifies the file containing the Perl script. By convention, Perl
scripts have a “.pl” extension. You can also specify other extensions for your
Perl scripts in the Perl Parameters branch of your Perl application in the Node
Manager.

■ query_string specifies parameters for the script.

For example, if a browser sends the following URL:

http://www.acme.com:9000/perl/myScript.pl

the server running on www.acme.com and listening at port 9000 would handle the
request. When the Listener receives the request, it passes the request to the WRB
because the /perl virtual directory is configured to call a Perl cartridge. The Perl
cartridge then executes myScript.pl.

Life Cycle of the Perl Cartridge
This section describes what the Perl cartridge does when it receives a request. This
section assumes knowledge of the callback functions used by the application server
(WRB).

You do not need to know the information in this section in order to use the Perl car-
tridge. However, this information is useful if you want to understand the architec-
ture of the cartridge.

When the first instance of a Perl cartridge starts up in a cartridge server, it executes
the InitRuntime callback function. The InitRuntime function constructs the Perl
interpreter and runs the $ORAWEB_HOME/../cartx/common/perl/lib/persist.pl
boot script. The function then executes the Perl script specified by the InitScript con-
Adding and Invoking Perl Applications 12-7

Life Cycle of the Perl Cartridge
figuration parameter as a subroutine in the context of the persist.pl script. The
default value for InitScript is $ORAWEB_HOME/../cartx/common/perl/lib/per-
linit.pl.

The script specified by InitScript can perform initialization tasks needed by other
Perl scripts. For example, you can load modules or open database connections at
this point.

The Authorize callback function is executed when the cartridge needs to authorize
the URL request. The Authorize function checks if the requested object is protected
under any authorization schemes or restrictions. If the Authorize callback function
succeeds, the Exec callback function is called next. The Exec function:

■ gets the values of the CGI environment variables

■ determines the Perl script to run

■ determines the parameters for the procedure

The cartridge compiles the Perl script specified in the URL and stores it as a subrou-
tine in a package whose name is based on the Perl script name. This allows the
script’s variables and subroutines to be localized to a package.

The requested Perl script is run as a subroutine in the context of the persist.pl boot
script. Later, when another request for the same Perl script is received, the script is
not recompiled (unless it has been modified). Instead, the package name corre-
sponding to the Perl script name is generated and the uniquely identified subrou-
tine in that package is called.

The Shutdown callback function is called automatically by the application server to
shut down a cartridge instance. Before shutting down the instance, the Shutdown
function runs the Perl script specified by the ShutScript configuration parameter.
This script allows you to clean up any initialization done by the script specified by
the InitScript configuration parameter. The default value for ShutScript is
$ORAWEB_HOME/../cartx/common/perl/lib/perlshut.pl. After running the script,
the Shutdown callback function deallocates and destroys the Perl interpreter.
12-8 Oracle Application Server 4.0 Developer’s Guide: LiveHTML and Perl Applications

Writing Perl
13

Writing Perl Scripts

For Perl scripts to run correctly under the Perl cartridge, they need to follow certain
rules. Note that you may need to modify existing CGI Perl scripts so that they com-
ply with these rules.

Contents
■ Customized cgi-lib.pl Library

■ Variable Scoping

■ Namespace Collisions

■ No Need for the #! Line

■ System Resources

■ The DBI and DBD::Oracle Modules

■ Pre-Loading Modules - Persistent Database Connections

■ Testing Perl Scripts

■ Perl Modules

■ Developing Perl Extension Modules

Customized cgi-lib.pl Library
If your Perl scripts use cgi-lib.pl (see http://cgi-lib.stanford.edu/cgi-lib/ for the lat-
est information), you have to modify your scripts to use a version of the library that
has been customized for the Perl cartridge. The unmodified version of cgi-lib.pl
will not work with the Perl cartridge because the cartridge runs the Perl interpreter
in a persistent manner. The modified version of cgi-lib.pl is $ORAWEB_HOME/
sample/perl/mycgi-lib.pl.
Scripts 13-1

Variable Scoping
Instead of writing

require "./cgi-lib.pl";

in your Perl scripts, use the following lines:

$ORACLE_HOME = $ENV{'ORACLE_HOME'};
$ORAWEB_HOME = "$ORACLE_HOME/ows/4.0";
require "$ORAWEB_HOME/../cartx/common/perl/sample/mycgi-lib.pl";

Variable Scoping
Be careful with namespace and variable scoping when running Perl scripts under
the Perl cartridge. In conventional CGI scripts, you declare a variable and use it.
You do not have to worry about undefining the variable because the script is
restarted for each request and is not reentrant.

In the case of the Perl cartridge, global variables persist across multiple calls. The
value acquired by a variable at the end of one execution of the script is the initial
value for the variable when the script is executed the next time. This might cause
inconsistent outputs, as seen in the following example:

1 print "Content-type: text/plain\n\n";
2 @question = (where, are, you, staying);
3 print "@question\n";
4 $" = "\n";
5 @answer = (all, on, separate, lines);
6 print "@answer\n";

When run by the cartridge for the first time, it outputs:

where are you staying
all
on
separate
lines

When run the second time and thereafter, it outputs:

where
are
you
staying
all
on
separate
lines
13-2 Oracle Application Server 4.0 Developer’s Guide: LiveHTML and Perl Applications

Namespace Collisions
This is because the script changes the value of the Perl special variable $" to “\n” at
line 4 and does not reset it to its original value before exiting the script. The Perl car-
tridge has a initial value of " " (blank) for the special variable.

One way of fixing the problem is to add this line to the end of the script to reset the
value of the variable:

$" = " ";

If the execution of your script depends on values of global variables, make sure
that these variables are reset to the original values.

To avoid the above problem:

■ Limit the scope of your variable to the required extent only. Make sure that the
variables expire after their use (by scoping the variable with my()) or that the
script resets them to their original values.

■ Reduce global variables and localize them where possible. When you need to
modify Perl’s global variables, localize them so that the modification affects the
local instance of the variable only. This causes the modified value of the vari-
able to be applicable only for that run of the script.

Another way to fix the example above is to localize the $" variable:

1 print "Content-type: text/plain\n\n";
2 @question = (where, are, you, staying);
3 print "@question\n";
4 local($");
5 $" = "\n";
6 @answer = (all, on, separate, lines);
7 print "@answer\n";

Line 4 localizes the $" Perl special variable. When the script runs as a subroutine in
a package, the localized variable $" has life only for that run of the script.

Namespace Collisions
The Perl cartridge caches compiled Perl scripts to speed up the response time. If
not properly handled, the caching of multiple Perl scripts can lead to namespace
collisions. To avoid this, the Perl cartridge translates the Perl script file name into a
package name that is unique, and then compiles the code into the package using
eval . The script is now available to the Perl cartridge in compiled form as a sub-
routine in the unique package name. When a request for the script is received, the
Writing Perl Scripts 13-3

Namespace Collisions
cartridge translates the filename to the package name and runs the subroutine han-
dler.

Although the above mechanism avoids the namespace collisions, you need to
remember that the default package name for the script is no longer “main”. The
default package name for the script is something that is generated by the cartridge.

The following example shows how the different package name affects your Perl
scripts.

Perl comes with library files, which are Perl scripts that provide utility functions.
For example, bigint.pl provides Perl with arbitrary size integer mathematics sub-
routines. This library defines many of the subroutines in the namespace of the pack-
age “main”. Here is an example:

normalize string form of number. Strip leading zeros. Strip any
white space and add a sign, if missing.
Strings that are not numbers result the value 'NaN'.
sub main'bnorm { #(num_str) return num_str
 local($_) = @_;
 s/\s+//g; # strip white space
 if (s/̂ ([+-]?)0*(\d+)$/$1$2/) { # test if number
 substr($_,$[,0) = '+' unless $1; # Add missing sign
 s/̂ -0/+0/;
 $_;
 } else {
 'NaN';
 }
}

A conventional CGI Perl script can use this library as follows:

1 # namespace.pl
2 require "bigint.pl";
3 print "Content-type: text/plain\n\n";
4 $one = &bnorm(456);
5 print "one = $one\n";

Line 4 can call the bnorm subroutine without specifying the package name, because
the default package name for conventional scripts is “main” and the bnorm subrou-
tine is available in the “main” package’s namespace. But under the Perl cartridge, a
script is compiled into a package whose name depends on the filename. Any eval
statement (note that require calls eval) is evaluated in this package’s
namespace. In the example, although bigint.pl is compiled and stored in the pack-
13-4 Oracle Application Server 4.0 Developer’s Guide: LiveHTML and Perl Applications

The DBI and DBD::Oracle Modules
age of your script, the subroutines are explicitly stored in the “main” package by
fully qualified subroutine name (for example, main'bnorm).

To run the example under the Perl cartridge, you need to modify the script to call
bnorm as main'bnorm .

1 # namespace.pl
2 require "bigint.pl";
3 print "Content-type: text/plain\n\n";
4 $one = &main'bnorm(456);
5 print "one = $one\n";

You should not assume that the default package name is “main”. To see the name
of the package that you are currently in, you can invoke the Perl function
caller() , which returns a list containing the package name as generated by the
Perl cartridge, the file name, and the current line number.

No Need for the #! Line
Typically, the first line of Perl CGI scripts tells the system the location of the Perl
interpreter. The line begins with “#!” and looks something like:

#!/usr/bin/perl

Perl scripts that are executed under the Perl cartridge do not need to have that line
because the cartridge uses its own built-in Perl interpreter.

System Resources
System resources acquired by your Perl script should be freed before the script
exits; otherwise, the persistent Perl interpreter in the Perl cartridge will reach sys-
tem limits for the resources.

In conventional CGI Perl scripts, you can open a file and do file operations without
closing it before the script exits. It does not matter in this case because the resources
are returned when the Perl interpreter exits, but in the Perl cartridge environment,
the file remains open even after the script execution is finished. You have to explic-
itly close the file in your script.

The DBI and DBD::Oracle Modules
The DBI and DBD::Oracle modules allow you to access both Oracle 7 and Oracle 8
databases. The DBI (database interface API) module provides a consistent database
access API to PERL scripts independent of database type. The DBD::Oracle module
Writing Perl Scripts 13-5

Pre-Loading Modules - Persistent Database Connections
allows the DBI API to access Oracle 7 and 8 databases. The DBD::Oracle module
(version 0.44) that is distributed with Oracle Application Server is based on client
libraries for the Oracle 8 database.

Pre-Loading Modules - Persistent Database Connections
Your Perl script may contain instructions that need not be executed repetitively for
each request of the script. Performance improves if these instructions are run only
once, and only the necessary portion is run for each request of the Perl script. For
example, if your Perl script accesses an Oracle database using DBI and the
DBD::Oracle module, you can pre-load the module and log on to the database
when an instance of the Perl cartridge starts up, instead of loading the module and
logging on each time the script is requested. Your script would open a cursor and
fetch and return the results from the cursor. This pre-loading of a module would
give you a database connection that persists across requests.

You can find the DBI and DBD::Oracle modules in the $ORAWEB_HOME/../cartx/
common/perl/lib/site_perl directory. You can find details on DBI and DBD::Oracle
at http://www.hermetica.com/technologia/DBI/.

To pre-load modules and perform initial tasks, edit the $ORAWEB_HOME/../cartx/
common/perl/lib/perlinit.pl file. This file is executed only once, when the cartridge
instance starts up. By default, there are no executable statements in this file. This
file is specified by the InitScript parameter, the value of which can be changed in
the Perl cartridge Configuration page.

The following example shows a typical Perl script that logs on to a database, makes
a query, and displays the output. Assume that this script is called scott.pl:

1 use DBI;
2 print "Content-type: text/plain\n\n";
3 $dbh = DBI->connect("", "scott", "tiger", "Oracle") || die $DBI::errstr;
4 $stmt = $dbh->prepare("select * from emp order by empno") || die

$DBI::errstr;
5 $rc = $stmt->execute() || die $DBI::errstr;
6 $nfields = $stmt->rows();
7 print "Query will return $nfields fields\n\n";
8 while (($empno, $name) = $stmt->fetchrow()) { print "$empno $name\n"; }
9 warn $DBI::errstr if $DBI::err;
10 die "fetch error: " . $DBI::errstr if $DBI::err;
11 $stmt->finish() || die "can't close cursor";
12 $dbh->disconnect() || die "cant't log off Oracle";
13-6 Oracle Application Server 4.0 Developer’s Guide: LiveHTML and Perl Applications

Pre-Loading Modules - Persistent Database Connections
Line 1 loads the DBI module. Loading the DBI module consists of reading in the
Perl module script (DBI.pm) and the shared object (DBI.so). These files extend the
Perl language by defining calls that enable Perl scripts to connect to Oracle data-
bases. Once the module is loaded, the shared object is dynamically linked with the
cartridge, the .pm Perl scripts are read in, compiled, and stored in the package
namespace. Scripts can then make calls defined in the .pm file. The example calls
the connect() , prepare() , execute() , rows() , fetchrow() , finish() , and
disconnect() methods in the DBI module.

To change the example so that it pre-loads the DBI module and logs in to the data-
base, add these lines to the perlinit.pl file:

1 # Contents of perlinit.pl
2 package Scott;
3 use DBI;
4 $dbh = DBI->connect("", "scott", "tiger", "Oracle") || die $DBI::errstr;;

Line 2 declares the package name to be Scott.

Line 3 loads the DBI module. The shared object DBI.so is dynamically linked with
the cartridge process address space and the .pm files are compiled and stored into
the Scott package’s namespace.

Line 4 calls the connect() method of the DBI module, which connects and logs in
to the Oracle database specified by the TWO_TASK environment variable. Connec-
tion can also be made to a remote database if it is specified in the first parameter of
the connect() call. The connection context is stored in the $dbh variable. For
your script to access this context, you need to declare your script to be in the same
package namespace (in Scott namespace) as shown below.

scott.pl contains the following:

1 # Contents of scott.pl
2 package Scott;
3 print "Content-type: text/plain\n\n";
4 $stmt = $dbh->prepare("select * from emp order by empno") || die

$DBI::errstr;
5 $rc = $stmt->execute() || die $DBI::errstr;
6 $nfields = $stmt->rows();
7 print "Query will return $nfields fields\n\n";
8 while (($empno, $name) = $stmt->fetchrow()) { print "$empno $name\n"; }
9 warn $DBI::errstr if $DBI::err;
10 die "fetch error: " . $DBI::errstr if $DBI::err;
11 $stmt->finish() || die "can't close cursor";
Writing Perl Scripts 13-7

Testing Perl Scripts
You need to ensure that the two portions of the script are compiled into the same
package namespace. To do this, declare “package PackageName” at the begin-
ning of both the perlinit.pl script and your script.

Note that the modified version of scott.pl does not call disconnect() because the
database connection and login is done only at cartridge start-up. If you log off, you
can no longer run the scott.pl script. You would have to terminate the cartridge pro-
cess and start up another instance such that it executes the perlinit.pl script and
reestablishes the database connection. The disconnect() is now done in the Perl
script specified by the ShutScript configuration parameter. The default value is
$ORAWEB_HOME/../cartx/common/perl/lib/perlshut.pl. To complete the exam-
ple, you should modify perlshut.pl to contain the following lines:

1 # Contents of perlshut.pl
2 package Scott;
3 $dbh->disconnect() || die "cant't log off Oracle";

To get another persistent database connection for another script (for example,
kane.pl), place the code from kane.pl that you want to put into perlinit.pl with a
unique package name (for example, “Kane”). The kane.pl script should also
declare “package Kane” before using any of the variables and subroutines initial-
ized in perlinit.pl.

Testing Perl Scripts
The Perl cartridge installation provides a tool called persistperl that simulates Perl
scripts running under the Perl cartridge. Use this tool to check that your Perl
scripts will run correctly under the cartridge.

To use the persistperl tool:

1. Set your path variable to include the $ORAWEB_HOME/../cartx/common/perl/
bin directory, which contains the persistperl binary.

2. Change the current directory to $ORAWEB_HOME/../cartx/common/perl/lib.

3. Invoke persistperl from a shell. It has the following syntax:

persistperl script_name [number_of_executions]

script_name specifies the name of your Perl script to run, and number_of_executions
specifies how many times it should be run. If omitted, number_of_executions
defaults to 100. persistperl displays the output of the script on standard out, which
you can redirect to a file. Check the output for any inconsistencies. In addition, the
13-8 Oracle Application Server 4.0 Developer’s Guide: LiveHTML and Perl Applications

Perl Modules
output can show if your script hit any system limits of acquiring resources after
being run multiple times.

Perl Modules
This section describes the Perl modules that are provided with the Perl cartridge.
Perl modules are reusable packages defined in library files. They function as classes
whose methods can be used by any Perl script that imports the module. Some Perl
modules are included in the standard Perl distribution (for example, DynaLoader,
AutoLoader, and POSIX).

For detailed information on these packages, see the man pages for the packages,
which are installed in the $ORAWEB_HOME/../cartx/common/perl/man directory.

For the latest versions of these packages, see http://www.perl.com/CPAN/. (CPAN
stands for Comprehensive Perl Archive Network.)

DBI (version 0.79)
This module describes the database access API for the Perl language. DBI defines
functions, variables, and conventions that provide a consistent database interface
independent of the actual database being used.

Note that DBI is just an interface between the drivers and the applications. The
drivers do the actual work required for database access.

The database driver (DBD::Oracle) required for accessing Oracle databases is pro-
vided with the Perl cartridge.

DBD::Oracle (version 0.44)
This module consists of the database driver for Oracle databases. Further informa-
tion on the DBD::Oracle module and DBI can be found at
http://www.hermetica.com/technologia/DBI/.

When you access databases using the DBD::Oracle module, you can get better per-
formance by pre-loading the module and maintaining persistent database connec-
tions. See “Pre-Loading Modules - Persistent Database Connections” on page 13-6
for details.

LWP or libwww-perl (version 5.08)
This collection of Perl modules provide classes that you can use to write Web cli-
ents, parse HTML, and communicate with different types of servers, such as mail
servers, HTTP servers, and NNTP servers. LWP provides three classes:
Writing Perl Scripts 13-9

Perl Modules
■ LWP::Request

This class is created by the client, and it specifies the request and all associated
request data. If the request is to receive a document from the web, the request
class is created with the URL of the document and document name.

■ LWP::Response

This class is returned by the server in response to a request. For example, if the
request was for a document, the document is returned, or if the request was to
send mail, the acknowledgment that the mail has been sent is returned.

■ LWP::UserAgent

This class provides the interface between the request and the response. The cli-
ent creates the request and passes it to a UserAgent. The UserAgent takes care
of the underlying low-level communication and handling, and passes the
request to the server. It then returns the response to the client, which contains
the results of the request.

CGI (version 2.36)
This module provides classes that can create HTML forms on the fly and parse
their contents. It also provides an interface for parsing and interpreting query
strings passed to CGI scripts. In this module, you can use the value of the previous
query to initialize the form, this means that the state of the form is preserved from
invocation to invocation.

MD5 (version 1.7)
This module enables you to use the RSA Data Security MD5 Message Digest algo-
rithm from within Perl programs. This module is used by the implementation of lib-
www-perl.

IO (version 1.15)
This module contains submodules to handle file, pipe, and socket I/O operations.
The classes supplied with this module are:

■ IO::Handle

This is the base class for all the other IO classes. This class is not usually used
directly. Other IO classes inherit from this class for their implementation.
13-10 Oracle Application Server 4.0 Developer’s Guide: LiveHTML and Perl Applications

Perl Modules
■ IO::Seekable

This class supplies seek-based methods to the other IO classes. Methods
include seek, tell and clearerr.

■ IO::File

This class inherits from IO::Handle and IO::Seekable. It provides methods spe-
cific to file handles such as open, getpos, and setpos.

■ IO::Pipe

This class provides an interface to create pipe-based communication between
processes.

■ IO::Socket

This class provides the interface for socket communication. It provides meth-
ods for creating and using sockets. Methods include socket, socketpair, accept,
send and recv.

Net (version 1.0502)
This module is a collection of classes that provide the user with a consistent API for
the client-side implementation of various protocols. The submodules of the Net
module have implemented the following protocols:

■ Net::FTP - File Transfer Protocol

■ Net::SMTP - Simple Mail Transfer Protocol

■ Net::Time - Time and Daytime protocols

■ Net::NNTP - Network News Transfer Protocol

■ Net::POP3 - Post Office Protocol

To complete the installation of the Net module, you need to run a configuration
script:

1. Set your path to include the perl executable provided with the Perl cartridge.

If you are using the C shell:

prompt> set path = ($ORAWEB_HOME/../cartx/common/perl/bin $path)

If you are using the Bourne or Korn shell:

prompt> PATH=$ORAWEB_HOME/../cartx/common/perl/bin:$PATH; export $PATH
Writing Perl Scripts 13-11

Perl Modules
2. Set the PERLLIB environment variable.

If you are using the C shell:

prompt> setenv PERLLIB $ORAWEB_HOME/../cartx/common/perl/lib:
 $ORAWEB_HOME/../cartx/common/perl/lib/ platform/version :
 $ORAWEB_HOME/../cartx/common/perl/lib/site_perl:
 $ORAWEB_HOME/../cartx/common/perl/lib/site_perl/ platform/

version

If you are using the Bourne or Korn shell:

prompt> PERLLIB=$ORAWEB_HOME/../cartx/common/perl/lib:
 $ORAWEB_HOME/../cartx/common/perl/lib/ platform/version :
 $ORAWEB_HOME/../cartx/common/perl/lib/site_perl:
 $ORAWEB_HOME/../cartx/common/perl/lib/site_perl/ platform/

version ;
 export $PERLLIB

Replace platform and version with the appropriate values: the platform directory
varies between installations of Perl. For example, on Solaris, platform is sun4-
solaris . The version directory refers to the directory named after the OS ver-
sion. For example, for Solaris, it could be 5.00401 .

3. Change directory to $ORAWEB_HOME/../cartx/common/perl/lib/site_perl/
Net, and execute the script configure.pl:

prompt> cd $ORAWEB_HOME/../cartx/common/perl/lib/site_perl/Net
prompt> perl configure.pl

The script prompts for configuration information about the machine, and cre-
ates a Perl script called Config.pm, which contains the configuration informa-
tion. This script is required by all the packages in the Net module.

Data-Dumper (version 2.07)
This module is required for “persistifying” Perl data structures. Given a list of sca-
lars or reference variables, this module has methods to output them in Perl syntax.
The return value can be eval ’ed to get back the original data structure. This mod-
ule is used in the implementation of some other modules supplied with the Perl car-
tridge, for example, net and libwww-perl.

Here is a simple example of how to use this package:

use Data::Dumper;
$boo = [1, [], "abcd", {1 => 'a', 22 => 'b'}, \\"p\q\'r"];
print Dumper($boo); # Pretty Prints the data-structure
13-12 Oracle Application Server 4.0 Developer’s Guide: LiveHTML and Perl Applications

Developing Perl Extension Modules
$bar = Dumper($boo); # $bar has the Perl statement which when
 # eval-ed returns the original data structure.
print Dumper(eval($bar)); # Pretty prints $boo.

Developing Perl Extension Modules
The Perl cartridge installation comes with the Perl interpreter runtime environ-
ment. Perl extension modules that you develop using this Perl interpreter runtime
environment can be accessed by the Perl cartridge.

The Perl interpreter installation is in the $ORAWEB_HOME/../cartx/common/perl
directory. The $ORAWEB_HOME/../cartx/common/perl/bin directory contains the
“perl” executable. You can develop and install your extension modules under the
$ORAWEB_HOME/../cartx/common/perl/lib directory.

For this you need to set the following environment variables:

■ Set your path variable to use the perl executable in the $ORAWEB_HOME/../
cartx/common/perl/bin directory.

■ Set the PERL5LIB environment variable to:

$ORAWEB_HOME/../cartx/common/perl/lib/sun4-solaris/5.00401:$ORAWEB_HOME/../
cartx/common/perl/lib:$ORAWEB_HOME/../cartx/common/perl/lib/site_perl/sun4-
solaris:$ORAWEB_HOME/../cartx/common/perl/lib/site_Perl

Migrating Perl Extension Modules
You might already have a Perl interpreter and have developed extension modules
for that environment. To have the same extension modules be available in the Perl
cartridge environment, you should rebuild the modules in the cartridge environ-
ment. For this you can use the Perl interpreter installation, which is a part of the
Perl cartridge installation.

To move the Perl extension modules from your Perl interpreter installation to the
Perl cartridge installation:

1. Assume that:

■ PI is your Perl Interpreter installation directory.

■ PC is your Perl cartridge installation directory, which is
$ORAWEB_HOME/../cartx/common/perl.

■ “Mod” is your Perl module name, and a directory with the same name as
the module name exists under PI/perl/lib/site_perl/sun4-solaris/auto/, that
is, you have the directory PI/perl/lib/site_perl/sun4-solaris/auto/Mod.
Writing Perl Scripts 13-13

Developing Perl Extension Modules
■ You have the PI/lib/site_perl/Mod.pm file.

2. Copy the PI/perl/lib/site_perl/sun4-solaris/auto/Mod directory to PC/lib/
site_perl/sun4-solaris/auto/.

3. Copy the PI/lib/site_perl/Mod.pm file to the PC/lib/site_perl directory.

4. Update the PC/lib/sun4-solaris/5.00401/perllocal.pod file to reflect all the mod-
ules moved in step 2. The perllocal.pod file contains information on each mod-
ule in your environment. Use the PI/lib/sun4-solaris/5.00401/perllocal.pod file
as a guide on how to update the file.

Accessing the Application Server API in Perl
You can develop Perl extension modules that access the application server API. Typ-
ically, you would write wrappers to the application server APIs in the module so
that you have the same junctions available to you as part of the Perl language for
developing web applications in Perl. Most of the API calls need the WRBContext as
the first argument. The Perl cartridge provides you access to the WRBContext of
the cartridge via a Perl global variable “::WRB”. While developing the module in C,
you can access the WRBContext as follows:

void *WRBCtx;
WRBCtx = SvIV(perl_get_sv("::WRB", FALSE));
13-14 Oracle Application Server 4.0 Developer’s Guide: LiveHTML and Perl Applications

Upgrading your Perl Inte
14

Upgrading your Perl Interpreter

The Perl distribution that comes with the Perl and LiveHTML cartridges is the
same as that available from public domain. The version that is installed with the
cartridges is 5.004_01. If you wish to upgrade to a later version, follow the instruc-
tions in this chapter. The latest version of the Perl distribution can be downloaded
at http://www.perl.com.

Contents
■ Installing a New Interpreter

■ Configuring Applications to Use a New Interpreter

Installing a New Interpreter
The Perl interpreter must be installed as a shared library. In UNIX for example, the
interpreter is installed as libperl.so .

After downloading the latest version of the Perl interpreter, decompress the
downloaded file into a temporary directory. Run the Configure utility with the
-Duseshrplib option as follows:

prompt> Configure -Dprefix= <installation directory> -Duseshrplib

Note: Perl interpreter versions older than 5.004_01 are not sup-
ported by Oracle.
rpreter 14-1

Configuring Applications to Use a New Interpreter
Follow the instructions presented to you. Continue the installation process by run-
ning the make command in the temporary directory. In UNIX:

prompt> make
prompt> make test
prompt> make install

In NT:

You can find more installation information in the README documentation that
comes with the download.

For <installation directory >,you can specify a non-application server path
as long as this path is reflected in your Perl or LiveHTML application’s environ-
ment variables (see the next section). The interpreter that was installed with the
application server can be found in $ORACLE_HOME/ows/cartx/common/perl
for UNIX and %ORACLE_HOME%\ows\cartx\common\perl\ for NT.

Configuring Applications to Use a New Interpreter
After the interpreter installation has completed, you need to change the configura-
tion information of the Perl and LiveHTML applications which will use the new
interpreter. Specifically, two environment variables have to be changed:
LD_LIBRARY_PATH (PATH for NT) and STD_PERLLIB.

To change the value of LD_LIBRARY_PATH (on UNIX) or PATH (on NT):

1. In the Oracle Application Server Manager, browse to the Environment Vari-
ables form in the Configuration folder of your Perl or LiveHTML application.

2. In UNIX, locate the LD_LIBRARY_PATH setting and replace the phrase

%ORACLE_HOME%/ows/cartx/common/perl/lib/sun4-solaris/5.00401/CORE

with

<new installation directory> /perl/lib/sun4-solaris/ <new version> /CORE

3. In NT, locate the PATH setting and replace the phrase

%ORACLE_HOME%\ows\cartx\common\perl\bin

with

<new installation directory> \bin
14-2 Oracle Application Server 4.0 Developer’s Guide: LiveHTML and Perl Applications

Configuring Applications to Use a New Interpreter
To change the value of STD_PERLLIB (both UNIX and NT):

1. In a shell or DOS prompt, run the following respective commands:

UNIX:

prompt> perl -e 'print join(":", @INC)'

NT:

prompt> perl -e 'print join(";", @INC)'

The STD_PERLLIB setting in the Environment Variables form will reflect the new
interpreter’s settings once you click the reload button.

Note: Version 5.005 of the Perl interpreter requires Perl modules
with XS extensions to be recompiled. Because of this and because
Perl and LiveHTML cartridges have modules with XS extensions,
applications written for those cartridges will not work with version
5.005 (not binary compatible).
Upgrading your Perl Interpreter 14-3

Configuring Applications to Use a New Interpreter
14-4 Oracle Application Server 4.0 Developer’s Guide: LiveHTML and Perl Applications

Troubles
15

Troubleshooting

Problems Invoking Your Perl Script
If your Perl script cannot be invoked:

■ Make sure that the virtual path for your cartridge maps to the physical direc-
tory that contains your Perl script.

■ Make sure that the application server is functioning properly. To check this, try
invoking other Perl scripts and other cartridges. You can try invoking the sam-
ple Perl scripts.

Log Files
If you have enabled logging for a Perl cartridge, log messages are written to the file
you specified in the Logging page (located under Configuration).

In addition, the Perl cartridge also writes any messages sent to stderr from within
the Perl scripts (for example, output from warn and die) to the log file.

Unhandled Errors
The Perl cartridge runs your Perl scripts as subroutines that are eval ’ed. If an error
occurs in the script, eval returns the error to the Perl cartridge, which writes the
error to the log file and sends an error message to the browser.
hooting 15-1

Unhandled Errors
15-2 Oracle Application Server 4.0 Developer’s Guide: LiveHTML and Perl Applications

Index

Symbols
<% %> tag, 4-4
<% @Language %> tag, 4-3
<% @Transaction %> tag, 6-1
<%= %> tag, 4-5
<OBJECT> tag, 4-6
<SCRIPT> tag, 4-3, 4-5

A
alias type, 7-16
Any interface

Perl bindings, 8-7
API

accessing application server API in Perl, 13-14
client-side implementation of protocols, 13-11
CORBA pseudo-object, 8-1

application server
accessing application server API in Perl, 13-13

applications
adding LiveHTML cartridges, 2-1
Perl cartridges, adding, 11-2

array IDL, 7-12
attribute

IDL, 7-13
AUTOLOAD subroutines, 12-6

B
binaries, Perl, 10-2
bounded IDL string, 7-11

C
callback functions

used by Perl cartridge, 12-7
cartridges

LiveHTML, 1-1
Perl, 10-1

CGI environment variables
echo command, 3-4
running Perl scripts, 11-1

CGI module
Perl cartridge, 13-10

Common Object Request Broker Architecture. See
CORBA

compiler, IDL-to-Perl, 9-1
compilers

IDL-to-Perl, 7-2
compiling Perl scripts, 12-8
config command, 3-3
configuration file

Perl cartridge, 13-12
configuring

LiveHTML applications, 2-5
Perl applications, 12-4

constants
IDL, 7-9

CORBA, 7-1
CORBA pseudo-object, 8-1
CORBA::Any

extract() method, 8-9
insert() method, 8-8
type() method, 8-8

CORBA::Any pseudo-object, 8-7
CORBA::Object
Index-1

duplicate() method, 8-2
is_a() method, 8-3
is_equivalent() method, 8-3
non_existent() method, 8-3
release() method, 8-2

CORBA::Object pseudo-object, 8-2
CORBA::ORB

bind() method, 8-6
init() method, 8-6
list_initial_services() method, 8-4
object_to_string() method, 8-5
resolve_initial_references() method, 8-5
string_to_object() method, 8-5
term() method, 8-7

CORBA::ORB pseudo-object, 8-4
CORBA::TCKind enumerated type, 8-21
CORBA::TypeCode

content_type() method, 8-20
create_alias_tc() method, 8-13
create_any() method, 8-11
create_array_tc() method, 8-15
create_enum_tc() method, 8-12
create_exception_tc() method, 8-13
create_interface_tc() method, 8-14
create_sequence_tc() method, 8-15
create_string_tc() method, 8-14
create_struct_tc() method, 8-12
create_wstring_tc() method, 8-14
default_index() method, 8-19
discriminator_type() method, 8-19
equal() method, 8-16
get_primitive_tc() method, 8-16
id() method, 8-17
kind() method, 8-16
length() method, 8-20
member_count() method, 8-17
member_label() method, 8-19
member_name() method, 8-18
member_type() method, 8-18
name() method, 8-17
orig_type() method, 8-20

CORBA::TypeCode pseuod-object, 8-9

D
data types

basic IDL, 7-10
database access

LiveHTML cartridge, 3-10
Disable scripting feature, 4-2

E
echo command, 3-4
Enable ICX Tag parameter, 2-7
Enable LiveHTML parameter, 2-6
Enable scripting feature, 4-2
enumerated IDL type, 7-3
enumerated type

IDL, 7-14
error messages

in SSI commands, 3-2
exception

IDL, 7-3, 7-17
exec command, 3-6

F
flastmod command, 3-6
fsize command, 3-5

H
host_and_domain_name variable, 12-7
hsp filename extension, 4-2
HTML page

creating to invoke Perl script, 11-4

I
ICX

Enable ICX Tag parameter, 2-7
requests

request command, 3-7
identifier, IDL, 7-3
IDL, 7-1

data types, 7-10
IDL compiler, 7-1, 7-2
IDL identifier, 7-3
Index-2

IDL types
mappings to Perl, 7-5

IDL-to-Perl compiler, 7-2
arrays and sequences, 7-12
attributes, 7-13
basic data types, 7-10
constants, 7-9
data types, 7-5
directory structure of generated files, 9-2
enumerated types, 7-14
generated Perl bindings, 7-5
identifiers, naming scopes, and Perl

packages, 7-3
IDL any type, 7-10
IDL module, 7-5
interfaces, 7-8
listing of generated files, 9-3
object references, 7-6
operations, 7-13
sample IDL, 9-1
strings, 7-11
structures, 7-15
using, 7-2

IDL-to-Perl mappings, 7-3
INC array in Perl, 7-3
include command, 3-4
inheritance, 7-8
InitScript parameter, 12-7
interface

IDL, 7-3, 7-8
inheritance, 7-8
Perl bindings

Any, 8-7
TCKind, 8-21
TypeCode, 8-9

Interface Definition Language. See IDL
interface, Object

Perl bindings, 8-2
interface, ORB

Perl bindings, 8-4
interpreter

Perl, 10-4
migrating modules to Perl cartridge, 13-13

IO module
Perl cartridge, 13-10

ISA array in Perl and inheritance, 7-8

L
language bindings for IDL, 7-1
libraries, Perl

path, 12-5
life cycle

Perl cartridge, 12-7
LiveHTML application

<% %> tag, 4-4
<% @Language %> tag, 4-3
<% @Transaction %> tag, 6-1
<%= %> tag, 4-5
<OBJECT> tag, 4-6
<SCRIPT> tag, 4-3, 4-5
adding, 2-1
adding cartridges, 2-3
configuring, 2-5
filename extensions, 4-2
generating IDL interfaces, 4-8
specifying default language, 4-2
specifying languages, 4-2
specifying transactional property of page, 6-1
transaction attributes, 6-2

LiveHTML cartridge
accessing CORBA objects, 7-1
commands, 3-2
CORBA pseudo-object API for Perl clients, 8-1
database access, 3-10
directory structure of generated files, 9-2
enabling/disabling scripting feature, 4-2
IDL-to-Perl compiler, 7-2
limiting usage, 2-9
object methods and attributes, 5-11
overview, 1-1
process flow, 1-3
sample IDL, 9-1
scripting, 1-2, 4-1
special characters, 3-2
SSI commands, 3-1
SSI examples, 3-8

LiveHTML page, invoking, 3-8
LiveHTML Parameters form, 2-6
log files
Index-3

Perl cartridge, 15-1

M
man pages, Perl, 10-2
module

IDL, 7-3, 7-5
modules

for Perl interpreter of LiveHTML cartridge, 4-1

N
naming scope, 7-3
nested scope, 7-4
number_of_executions variable, 13-8

O
Object interface

Perl bindings, 8-2
Object Management Group, 7-1
object reference

narrowing, 7-8
objects

methods and attributes, 5-11
OMG. See Object Management Group
operation

IDL, 7-13
Oracle database

accessing using Perl scripts, 13-6
ORB interface

Perl bindings, 8-4
overview

LiveHTML cartridge, 1-1

P
packages

Perl, 7-3
parameters

IDL interface
type and range checking, 7-5

Perl Parameters form, 12-5
path

for Perl libraries, 12-5

Perl application
adding, 12-1
adding cartridges, 11-2
configuring, 12-4
tutorial, 11-1

Perl bindings
Any interface, 8-7
Object interface, 8-2
ORB interface, 8-4
TCKind interface, 8-21
TypeCode interface, 8-9

Perl cartridge, 10-1
accessing application server API, 13-14
advantages, 10-2
creating an application, 11-2
developing Perl extension modules, 13-13
executables, 10-3
installing

persistperl tool, 13-8
using $ORAWEB_HOME/../cartx/

perl, 10-3, 13-6
invoking, 12-7

problems, 15-1
life cycle, 12-7
migrating Perl extension modules, 13-13
modifying scripts, 13-1
modules

CGI, 13-10
Data-Dumper, 13-12
DBD, 13-6, 13-9
DBI, 13-6, 13-9
IO, 13-10
LWP, 13-9
MD5, 13-10
Net, 13-11
pre-loading, 13-6

namespace collisions, 13-3
parameters, 12-5
persistent database connection, 13-6
source files, 10-2
troubleshooting, 15-1
variable scoping, 13-2
virtual path, 11-3, 12-5

Perl Cartridge Parameters form, 12-6
Perl clients
Index-4

SII support, 8-1
Perl extension modules, developing, 13-13
Perl libraries

customized cgi-lib.pl library, 13-1
path, 12-5

Perl modules, 7-3, 13-9
accessing, 7-5
getting additional, 4-1
sample files generated by IDL-to-Perl

compiler, 9-1
See also Perl cartridge
using, 7-5

Perl package, 7-3
Perl scripts

accessing CORBA objects, 7-1
InitScript parameter, 12-7
migrating Perl extension modules, 13-13
modules

pre-loading, 13-6
running from a shell, 10-3
ShutScript parameter, 12-8, 13-8
system resources, 13-5
testing, 13-8
variable scoping, 13-2
writing, 11-1

PERL5LIB environment variable, 7-3
perlidlc, 7-2
persistperl tool, 13-8
protocols

Perl Net module, 13-11
pseudo-object API, CORBA, 8-1

Q
query_string variable, 12-7

R
range checking for IDL interface parameters, 7-5
request command, 3-7
require directive, Perl, 7-5

S
scope

IDL, 7-3
nested, 7-4

script_name variable, 12-7
scripting

LiveHTML cartridge, 1-2, 4-1
sequence

IDL, 7-12
Sever-Side Includes. See SSI
ShutScript parameter, 12-8, 13-8
SII, 8-1

Perl bindings
Any interface, 8-7
Object interface, 8-2
ORB interface, 8-4
TCKind interface, 8-21
TypeCode interface, 8-9

source files
Perl, 10-2

SSI
command examples, 3-8
examples, 3-8

SSI commands, 3-1
config file, 3-3
echo file, 3-4
error messages, 3-2
exec, 3-6
flastmod, 3-6
fsize, 3-5
include file, 3-4
request, 3-7

Static Invocation Interface. See SII
strings

IDL, 7-11
structure

IDL, 7-3, 7-15

T
TCKind interface

Perl bindings, 8-21
transaction attributes, 6-2
transaction objects, 6-3
troubleshooting

Perl cartridge, 15-1
tutorial
Index-5

Perl application, 11-1
type checking for IDL interface parameters, 7-5
TypeCode interface

Perl bindings, 8-9
typedef

IDL, 7-16

U
unbounded IDL string, 7-11
unhandled errors

Perl cartridge, 15-1
union

IDL, 7-3, 7-16
URLs

invoking Perl scripts, 12-7
use directive, Perl, 7-5

V
virtual path

specifying for Perl cartridge, 11-3, 12-5
Virtual Paths form

LiveHTML cartridge, 2-5

W
Web Application Objects

collection objects, 5-2, 5-4
container objects, 5-2
CORBA objects, 5-1
core object set, 5-2
five pre-defined variables, 5-3
I/O objects, 5-2
ICX objects, 5-2, 5-4
methods and attributes, 5-11
overview, 1-2
scripting using Perl, 5-3
transaction objects, 5-2, 6-3
utility objects, 5-2, 5-4

website
for Perl executables, 10-4
Index-6

	1 LiveHTML Cartridge Overview
	Server-Side Includes (SSI)
	Embedded Scripts
	Web Application Objects
	IDL-to-Perl Compiler
	Process Flow

	2 Adding and Invoking Applications
	Adding LiveHTML Applications
	Configuring LiveHTML Applications

	3 Using Server-Side Includes
	SSI Commands
	config
	include
	echo
	fsize
	flastmod
	exec
	request
	SSI Examples

	4 Writing Scripts
	Filename Extensions for Scripts
	Enabling and Disabling the Scripting Feature
	Specifying Scripting Languages
	Embedding Scripts
	Using CORBA Objects in Scripts
	Scripting Examples

	5 Developing with Web Application Objects
	What are Web Application Objects
	Scripting with Web Application Objects
	Summary of Methods and Attributes

	6 Transactions in LiveHTML
	Specifying the Transactional Property of a LiveHTM...
	Transaction Objects for Web Application Objects
	Example

	7 Accessing CORBA Objects from Perl Scripts
	Using the IDL-to-Perl Compiler
	Identifiers, Naming Scopes, and Perl Packages
	Using the Generated Perl Bindings

	8 CORBA Pseudo-Object API for Perl Clients
	Object
	ORB
	Any
	TypeCode
	TCKind

	9 Sample Output from the IDL-to-Perl Compiler
	Sample IDL
	Directory Structure of the Generated Files
	Listings of the Generated Files

	10 10 Perl Cartridge Overview
	How the Perl Cartridge Improves Performance
	Files in the Distribution
	Using $ORAWEB_HOME/../cartx/common/perl as Your Ma...
	Variations from Perl Standard Version

	11 Tutorial
	1. Writing the Perl Script
	2. Creating a Perl Application and its Components
	3. Reloading
	4. Creating an HTML Page to Invoke the Perl Script...

	12 Adding and Invoking Perl Applications
	Adding Perl Applications
	Configuring Perl Applications
	Number of Requests Processed by a Cartridge Instan...
	Invoking Perl Cartridges
	Life Cycle of the Perl Cartridge

	13 Writing Perl Scripts
	Customized cgi-lib.pl Library
	Variable Scoping
	Namespace Collisions
	No Need for the #! Line
	System Resources
	The DBI and DBD::Oracle Modules
	Pre-Loading Modules - Persistent Database Connecti...
	Testing Perl Scripts
	Perl Modules
	Developing Perl Extension Modules

	14 Upgrading your Perl Interpreter
	Installing a New Interpreter
	Configuring Applications to Use a New Interpreter

	15 Troubleshooting
	Problems Invoking Your Perl Script
	Log Files
	Unhandled Errors

	Index

